Abstract:We present an open-source web service for Czech morphosyntactic analysis. The system combines a deep learning model with rescoring by a high-precision morphological dictionary at inference time. We show that our hybrid method surpasses two competitive baselines: While the deep learning model ensures generalization for out-of-vocabulary words and better disambiguation, an improvement over an existing morphological analyser MorphoDiTa, at the same time, the deep learning model benefits from inference-time guidance of a manually curated morphological dictionary. We achieve 50% error reduction in lemmatization and 58% error reduction in POS tagging over MorphoDiTa, while also offering dependency parsing. The model is trained on one of the currently largest Czech morphosyntactic corpora, the PDT-C 1.0, with the trained models available at https://hdl.handle.net/11234/1-5293. We provide the tool as a web service deployed at https://lindat.mff.cuni.cz/services/udpipe/. The source code is available at GitHub (https://github.com/ufal/udpipe/tree/udpipe-2), along with a Python client for a simple use. The documentation for the models can be found at https://ufal.mff.cuni.cz/udpipe/2/models#czech_pdtc1.0_model.
Abstract:We present CWRCzech, Click Web Ranking dataset for Czech, a 100M query-document Czech click dataset for relevance ranking with user behavior data collected from search engine logs of Seznam.cz. To the best of our knowledge, CWRCzech is the largest click dataset with raw text published so far. It provides document positions in the search results as well as information about user behavior: 27.6M clicked documents and 10.8M dwell times. In addition, we also publish a manually annotated Czech test for the relevance task, containing nearly 50k query-document pairs, each annotated by at least 2 annotators. Finally, we analyze how the user behavior data improve relevance ranking and show that models trained on data automatically harnessed at sufficient scale can surpass the performance of models trained on human annotated data. CWRCzech is published under an academic non-commercial license and is available to the research community at https://github.com/seznam/CWRCzech.
Abstract:We focus on morphological inflection in out-of-vocabulary (OOV) conditions, an under-researched subtask in which state-of-the-art systems usually are less effective. We developed three systems: a retrograde model and two sequence-to-sequence (seq2seq) models based on LSTM and Transformer. For testing in OOV conditions, we automatically extracted a large dataset of nouns in the morphologically rich Czech language, with lemma-disjoint data splits, and we further manually annotated a real-world OOV dataset of neologisms. In the standard OOV conditions, Transformer achieves the best results, with increasing performance in ensemble with LSTM, the retrograde model and SIGMORPHON baselines. On the real-world OOV dataset of neologisms, the retrograde model outperforms all neural models. Finally, our seq2seq models achieve state-of-the-art results in 9 out of 16 languages from SIGMORPHON 2022 shared task data in the OOV evaluation (feature overlap) in the large data condition. We release the Czech OOV Inflection Dataset for rigorous evaluation in OOV conditions. Further, we release the inflection system with the seq2seq models as a ready-to-use Python library.
Abstract:We present LatinPipe, the winning submission to the EvaLatin 2024 Dependency Parsing shared task. Our system consists of a fine-tuned concatenation of base and large pre-trained LMs, with a dot-product attention head for parsing and softmax classification heads for morphology to jointly learn both dependency parsing and morphological analysis. It is trained by sampling from seven publicly available Latin corpora, utilizing additional harmonization of annotations to achieve a more unified annotation style. Before fine-tuning, we train the system for a few initial epochs with frozen weights. We also add additional local relative contextualization by stacking the BiLSTM layers on top of the Transformer(s). Finally, we ensemble output probability distributions from seven randomly instantiated networks for the final submission. The code is available at https://github.com/ufal/evalatin2024-latinpipe.
Abstract:In this project, we have investigated the use of advanced machine learning methods, specifically fine-tuned large language models, for pre-annotating data for a lexical extension task, namely adding descriptive words (verbs) to an existing (but incomplete, as of yet) ontology of event types. Several research questions have been focused on, from the investigation of a possible heuristics to provide at least hints to annotators which verbs to include and which are outside the current version of the ontology, to the possible use of the automatic scores to help the annotators to be more efficient in finding a threshold for identifying verbs that cannot be assigned to any existing class and therefore they are to be used as seeds for a new class. We have also carefully examined the correlation of the automatic scores with the human annotation. While the correlation turned out to be strong, its influence on the annotation proper is modest due to its near linearity, even though the mere fact of such pre-annotation leads to relatively short annotation times.
Abstract:We describe the winning submission to the CRAC 2022 Shared Task on Multilingual Coreference Resolution. Our system first solves mention detection and then coreference linking on the retrieved spans with an antecedent-maximization approach, and both tasks are fine-tuned jointly with shared Transformer weights. We report results of fine-tuning a wide range of pretrained models. The center of this contribution are fine-tuned multilingual models. We found one large multilingual model with sufficiently large encoder to increase performance on all datasets across the board, with the benefit not limited only to the underrepresented languages or groups of typologically relative languages. The source code is available at https://github.com/ufal/crac2022-corpipe.
Abstract:We introduce a large and diverse Czech corpus annotated for grammatical error correction (GEC) with the aim to contribute to the still scarce data resources in this domain for languages other than English. The Grammar Error Correction Corpus for Czech (GECCC) offers a variety of four domains, covering error distributions ranging from high error density essays written by non-native speakers, to website texts, where errors are expected to be much less common. We compare several Czech GEC systems, including several Transformer-based ones, setting a strong baseline to future research. Finally, we meta-evaluate common GEC metrics against human judgements on our data. We make the new Czech GEC corpus publicly available under the CC BY-SA 4.0 license at http://hdl.handle.net/11234/1-4639 .
Abstract:We propose a character-based nonautoregressive GEC approach, with automatically generated character transformations. Recently, per-word classification of correction edits has proven an efficient, parallelizable alternative to current encoder-decoder GEC systems. We show that word replacement edits may be suboptimal and lead to explosion of rules for spelling, diacritization and errors in morphologically rich languages, and propose a method for generating character transformations from GEC corpus. Finally, we train character transformation models for Czech, German and Russian, reaching solid results and dramatic speedup compared to autoregressive systems. The source code is released at https://github.com/ufal/wnut2021_character_transformations_gec.
Abstract:Sensitivity of deep-neural models to input noise is known to be a challenging problem. In NLP, model performance often deteriorates with naturally occurring noise, such as spelling errors. To mitigate this issue, models may leverage artificially noised data. However, the amount and type of generated noise has so far been determined arbitrarily. We therefore propose to model the errors statistically from grammatical-error-correction corpora. We present a thorough evaluation of several state-of-the-art NLP systems' robustness in multiple languages, with tasks including morpho-syntactic analysis, named entity recognition, neural machine translation, a subset of the GLUE benchmark and reading comprehension. We also compare two approaches to address the performance drop: a) training the NLP models with noised data generated by our framework; and b) reducing the input noise with external system for natural language correction. The code is released at https://github.com/ufal/kazitext.
Abstract:We propose a new architecture for diacritics restoration based on contextualized embeddings, namely BERT, and we evaluate it on 12 languages with diacritics. Furthermore, we conduct a detailed error analysis on Czech, a morphologically rich language with a high level of diacritization. Notably, we manually annotate all mispredictions, showing that roughly 44% of them are actually not errors, but either plausible variants (19%), or the system corrections of erroneous data (25%). Finally, we categorize the real errors in detail. We release the code at https://github.com/ufal/bert-diacritics-restoration.