Abstract:Model misspecification analysis strategies, such as anomaly detection, model validation, and model comparison are a key component of scientific model development. Over the last few years, there has been a rapid rise in the use of simulation-based inference (SBI) techniques for Bayesian parameter estimation, applied to increasingly complex forward models. To move towards fully simulation-based analysis pipelines, however, there is an urgent need for a comprehensive simulation-based framework for model misspecification analysis. In this work, we provide a solid and flexible foundation for a wide range of model discrepancy analysis tasks, using distortion-driven model misspecification tests. From a theoretical perspective, we introduce the statistical framework built around performing many hypothesis tests for distortions of the simulation model. We also make explicit analytic connections to classical techniques: anomaly detection, model validation, and goodness-of-fit residual analysis. Furthermore, we introduce an efficient self-calibrating training algorithm that is useful for practitioners. We demonstrate the performance of the framework in multiple scenarios, making the connection to classical results where they are valid. Finally, we show how to conduct such a distortion-driven model misspecification test for real gravitational wave data, specifically on the event GW150914.
Abstract:Scaling laws for large language models (LLMs) have provided useful guidance on how to train ever larger models for predictable performance gains. Time series forecasting shares a similar sequential structure to language, and is amenable to large-scale transformer architectures. Here we show that foundational decoder-only time series transformer models exhibit analogous scaling-behavior to LLMs, while architectural details (aspect ratio and number of heads) have a minimal effect over broad ranges. We assemble a large corpus of heterogenous time series data on which to train, and establish, for the first time, power-law scaling relations with respect to parameter count, dataset size, and training compute, spanning five orders of magnitude.