Abstract:Retrieval augmented generation (RAG) has enhanced large language models by enabling access to external knowledge, with graph-based RAG emerging as a powerful paradigm for structured retrieval and reasoning. However, existing graph-based methods often over-rely on surface-level node matching and lack explicit causal modeling, leading to unfaithful or spurious answers. Prior attempts to incorporate causality are typically limited to local or single-document contexts and also suffer from information isolation that arises from modular graph structures, which hinders scalability and cross-module causal reasoning. To address these challenges, we propose HugRAG, a framework that rethinks knowledge organization for graph-based RAG through causal gating across hierarchical modules. HugRAG explicitly models causal relationships to suppress spurious correlations while enabling scalable reasoning over large-scale knowledge graphs. Extensive experiments demonstrate that HugRAG consistently outperforms competitive graph-based RAG baselines across multiple datasets and evaluation metrics. Our work establishes a principled foundation for structured, scalable, and causally grounded RAG systems.
Abstract:Large language models (LLMs) have revolutionized natural language processing (NLP), particularly through Retrieval-Augmented Generation (RAG), which enhances LLM capabilities by integrating external knowledge. However, traditional RAG systems face critical limitations, including disrupted contextual integrity due to text chunking, and over-reliance on semantic similarity for retrieval. To address these issues, we propose CausalRAG, a novel framework that incorporates causal graphs into the retrieval process. By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision, leading to more accurate and interpretable responses. We evaluate CausalRAG against regular RAG and graph-based RAG approaches, demonstrating its superiority across several metrics. Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.