Abstract:Matrix completion is an important area of research in recommender systems. Recent methods view a rating matrix as a user-item bi-partite graph with labeled edges denoting observed ratings and predict the edges between the user and item nodes by using the graph neural network (GNN). Despite their effectiveness, they treat each rating type as an independent relation type and thus cannot sufficiently consider the ordinal nature of the ratings. In this paper, we explore a new approach to exploit rating ordinality for GNN, which has not been studied well in the literature. We introduce a new method, called ROGMC, to leverage Rating Ordinality in GNN-based Matrix Completion. It uses cumulative preference propagation to directly incorporate rating ordinality in GNN's message passing, allowing for users' stronger preferences to be more emphasized based on inherent orders of rating types. This process is complemented by interest regularization which facilitates preference learning using the underlying interest information. Our extensive experiments show that ROGMC consistently outperforms the existing strategies of using rating types for GNN. We expect that our attempt to explore the feasibility of utilizing rating ordinality for GNN may stimulate further research in this direction.
Abstract:Self-supervised learning is crucial for clinical imaging applications, given the lack of explicit labels in healthcare. However, conventional approaches that rely on precise vision-language alignment are not always feasible in complex clinical imaging modalities, such as cardiac magnetic resonance (CMR). CMR provides a comprehensive visualization of cardiac anatomy, physiology, and microstructure, making it challenging to interpret. Additionally, CMR reports require synthesizing information from sequences of images and different views, resulting in potentially weak alignment between the study and diagnosis report pair. To overcome these challenges, we propose \textbf{CMRformer}, a multimodal learning framework to jointly learn sequences of CMR images and associated cardiologist's reports. Moreover, one of the major obstacles to improving CMR study is the lack of large, publicly available datasets. To bridge this gap, we collected a large \textbf{CMR dataset}, which consists of 13,787 studies from clinical cases. By utilizing our proposed CMRformer and our collected dataset, we achieved remarkable performance in real-world clinical tasks, such as CMR image retrieval and diagnosis report retrieval. Furthermore, the learned representations are evaluated to be practically helpful for downstream applications, such as disease classification. Our work could potentially expedite progress in the CMR study and lead to more accurate and effective diagnosis and treatment.