Abstract:Early and accessible detection of Alzheimer's disease (AD) remains a critical clinical challenge, and cube-copying tasks offer a simple yet informative assessment of visuospatial function. This work proposes a multimodal framework that converts hand-drawn cube sketches into graph-structured representations capturing geometric and topological properties, and integrates these features with demographic information and neuropsychological test (NPT) scores for AD classification. Cube drawings are modeled as graphs with node features encoding spatial coordinates, local graphlet-based topology, and angular geometry, which are processed using graph neural networks and fused with age, education, and NPT features in a late-fusion model. Experimental results show that graph-based representations provide a strong unimodal baseline and substantially outperform pixel-based convolutional models, while multimodal integration further improves performance and robustness to class imbalance. SHAP-based interpretability analysis identifies specific graphlet motifs and geometric distortions as key predictors, closely aligning with clinical observations of disorganized cube drawings in AD. Together, these results establish graph-based analysis of cube copying as an interpretable, non-invasive, and scalable approach for Alzheimer's disease screening.
Abstract:Graphical User Interface (GUI) grounding - the task of mapping natural language instructions to screen coordinates - is essential for autonomous agents and accessibility technologies. Existing systems rely on monolithic models or one-shot pipelines that lack modularity and fail under visual clutter and ambiguous instructions. We introduce MEGA-GUI, a multi-stage framework that separates grounding into coarse Region-of-Interest (ROI) selection and fine-grained element grounding, orchestrated by specialized vision-language agents. MEGA-GUI features a bidirectional ROI zoom algorithm that mitigates spatial dilution and a context-aware rewriting agent that reduces semantic ambiguity. Our analysis reveals complementary strengths and weaknesses across vision-language models at different visual scales, and we show that leveraging this modular structure achieves consistently higher accuracy than monolithic approaches. On the visually dense ScreenSpot-Pro benchmark, MEGA-GUI attains 73.18% accuracy, and on the semantically complex OSWorld-G benchmark it reaches 68.63%, surpassing previously reported results. Code and the Grounding Benchmark Toolkit (GBT) are available at https://github.com/samsungsds-research-papers/mega-gui.
Abstract:In this work, we propose a new method for ordering nets during the process of layer assignment in global routing problems. The global routing problems that we focus on in this work are based on routing problems that occur in the design of substrates in multilayered semiconductor packages. The proposed new method is based on machine learning techniques and we show that the proposed method supersedes conventional net ordering techniques based on heuristic score functions. We perform global routing experiments in multilayered semiconductor package environments in order to illustrate that the routing order based on our new proposed technique outperforms previous methods based on heuristics. Our approach of using machine learning for global routing targets specifically the net ordering step which we show in this work can be significantly improved by deep learning.