Abstract:Incremental Learning (IL) aims to accumulate knowledge from sequential input tasks while overcoming catastrophic forgetting. Existing IL methods typically assume that an incoming task has only increments of classes or domains, referred to as Class IL (CIL) or Domain IL (DIL), respectively. In this work, we consider a more challenging and realistic but under-explored IL scenario, named Versatile Incremental Learning (VIL), in which a model has no prior of which of the classes or domains will increase in the next task. In the proposed VIL scenario, the model faces intra-class domain confusion and inter-domain class confusion, which makes the model fail to accumulate new knowledge without interference with learned knowledge. To address these issues, we propose a simple yet effective IL framework, named Incremental Classifier with Adaptation Shift cONtrol (ICON). Based on shifts of learnable modules, we design a novel regularization method called Cluster-based Adaptation Shift conTrol (CAST) to control the model to avoid confusion with the previously learned knowledge and thereby accumulate the new knowledge more effectively. Moreover, we introduce an Incremental Classifier (IC) which expands its output nodes to address the overwriting issue from different domains corresponding to a single class while maintaining the previous knowledge. We conducted extensive experiments on three benchmarks, showcasing the effectiveness of our method across all the scenarios, particularly in cases where the next task can be randomly altered. Our implementation code is available at https://github.com/KHU-AGI/VIL.
Abstract:This paper firstly presents old photo modernization using multiple references by performing stylization and enhancement in a unified manner. In order to modernize old photos, we propose a novel multi-reference-based old photo modernization (MROPM) framework consisting of a network MROPM-Net and a novel synthetic data generation scheme. MROPM-Net stylizes old photos using multiple references via photorealistic style transfer (PST) and further enhances the results to produce modern-looking images. Meanwhile, the synthetic data generation scheme trains the network to effectively utilize multiple references to perform modernization. To evaluate the performance, we propose a new old photos benchmark dataset (CHD) consisting of diverse natural indoor and outdoor scenes. Extensive experiments show that the proposed method outperforms other baselines in performing modernization on real old photos, even though no old photos were used during training. Moreover, our method can appropriately select styles from multiple references for each semantic region in the old photo to further improve the modernization performance.