Abstract:Advanced AI models hold the promise of tremendous benefits for humanity, but society needs to proactively manage the accompanying risks. In this paper, we focus on what we term "frontier AI" models: highly capable foundation models that could possess dangerous capabilities sufficient to pose severe risks to public safety. Frontier AI models pose a distinct regulatory challenge: dangerous capabilities can arise unexpectedly; it is difficult to robustly prevent a deployed model from being misused; and, it is difficult to stop a model's capabilities from proliferating broadly. To address these challenges, at least three building blocks for the regulation of frontier models are needed: (1) standard-setting processes to identify appropriate requirements for frontier AI developers, (2) registration and reporting requirements to provide regulators with visibility into frontier AI development processes, and (3) mechanisms to ensure compliance with safety standards for the development and deployment of frontier AI models. Industry self-regulation is an important first step. However, wider societal discussions and government intervention will be needed to create standards and to ensure compliance with them. We consider several options to this end, including granting enforcement powers to supervisory authorities and licensure regimes for frontier AI models. Finally, we propose an initial set of safety standards. These include conducting pre-deployment risk assessments; external scrutiny of model behavior; using risk assessments to inform deployment decisions; and monitoring and responding to new information about model capabilities and uses post-deployment. We hope this discussion contributes to the broader conversation on how to balance public safety risks and innovation benefits from advances at the frontier of AI development.
Abstract:Current approaches to building general-purpose AI systems tend to produce systems with both beneficial and harmful capabilities. Further progress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills. We explain why model evaluation is critical for addressing extreme risks. Developers must be able to identify dangerous capabilities (through "dangerous capability evaluations") and the propensity of models to apply their capabilities for harm (through "alignment evaluations"). These evaluations will become critical for keeping policymakers and other stakeholders informed, and for making responsible decisions about model training, deployment, and security.
Abstract:As the transformative potential of AI has become increasingly salient as a matter of public and political interest, there has been growing discussion about the need to ensure that AI broadly benefits humanity. This in turn has spurred debate on the social responsibilities of large technology companies to serve the interests of society at large. In response, ethical principles and codes of conduct have been proposed to meet the escalating demand for this responsibility to be taken seriously. As yet, however, few institutional innovations have been suggested to translate this responsibility into legal commitments which apply to companies positioned to reap large financial gains from the development and use of AI. This paper offers one potentially attractive tool for addressing such issues: the Windfall Clause, which is an ex ante commitment by AI firms to donate a significant amount of any eventual extremely large profits. By this we mean an early commitment that profits that a firm could not earn without achieving fundamental, economically transformative breakthroughs in AI capabilities will be donated to benefit humanity broadly, with particular attention towards mitigating any downsides from deployment of windfall-generating AI.