Abstract:The NFDI4DataScience (NFDI4DS) project aims to enhance the accessibility and interoperability of research data within Data Science (DS) and Artificial Intelligence (AI) by connecting digital artifacts and ensuring they adhere to FAIR (Findable, Accessible, Interoperable, and Reusable) principles. To this end, this poster introduces the NFDI4DS Ontology, which describes resources in DS and AI and models the structure of the NFDI4DS consortium. Built upon the NFDICore ontology and mapped to the Basic Formal Ontology (BFO), this ontology serves as the foundation for the NFDI4DS knowledge graph currently under development.
Abstract:Ontologies are widely used in materials science to describe experiments, processes, material properties, and experimental and computational workflows. Numerous online platforms are available for accessing and sharing ontologies in Materials Science and Engineering (MSE). Additionally, several surveys of these ontologies have been conducted. However, these studies often lack comprehensive analysis and quality control metrics. This paper provides an overview of ontologies used in Materials Science and Engineering to assist domain experts in selecting the most suitable ontology for a given purpose. Sixty selected ontologies are analyzed and compared based on the requirements outlined in this paper. Statistical data on ontology reuse and key metrics are also presented. The evaluation results provide valuable insights into the strengths and weaknesses of the investigated MSE ontologies. This enables domain experts to select suitable ontologies and to incorporate relevant terms from existing resources.