Indian Institute of Technology, Delhi
Abstract:The prediction of crop yields internationally is a crucial objective in agricultural research. Thus, this study implements 6 regression models (Linear, Tree, Gradient Descent, Gradient Boosting, K- Nearest Neighbors, and Random Forest) to predict crop yields in 196 countries. Given 4 key training parameters, pesticides (tonnes), rainfall (mm), temperature (Celsius), and yield (hg/ha), it was found that our Random Forest Regression model achieved a determination coefficient (r^2) of 0.94, with a margin of error (ME) of .03. The models were trained and tested using the Food and Agricultural Organization of the United Nations data, along with the World Bank Climate Change Data Catalog. Furthermore, each parameter was analyzed to understand how varying factors could impact overall yield. We used unconventional models, contrary to generally used Deep Learning (DL) and Machine Learning (ML) models, combined with recently collected data to implement a unique approach in our research. Existing scholarship would benefit from understanding the most optimal model for agricultural research, specifically using the United Nations data.
Abstract:Large language models (LLMs) are revolutionizing various fields by leveraging large text corpora for context-aware intelligence. Due to the context size, however, encoding an entire graph with LLMs is fundamentally limited. This paper explores how to better integrate graph data with LLMs and presents a novel approach using various encoding modalities (e.g., text, image, and motif) and approximation of global connectivity of a graph using different prompting methods to enhance LLMs' effectiveness in handling complex graph structures. The study also introduces GraphTMI, a new benchmark for evaluating LLMs in graph structure analysis, focusing on factors such as homophily, motif presence, and graph difficulty. Key findings reveal that image modality, supported by advanced vision-language models like GPT-4V, is more effective than text in managing token limits while retaining critical information. The research also examines the influence of different factors on each encoding modality's performance. This study highlights the current limitations and charts future directions for LLMs in graph understanding and reasoning tasks.
Abstract:As the second wave in India mitigates, COVID-19 has now infected about 29 million patients countrywide, leading to more than 350 thousand people dead. As the infections surged, the strain on the medical infrastructure in the country became apparent. While the country vaccinates its population, opening up the economy may lead to an increase in infection rates. In this scenario, it is essential to effectively utilize the limited hospital resources by an informed patient triaging system based on clinical parameters. Here, we present two interpretable machine learning models predicting the clinical outcomes, severity, and mortality, of the patients based on routine non-invasive surveillance of blood parameters from one of the largest cohorts of Indian patients at the day of admission. Patient severity and mortality prediction models achieved 86.3% and 88.06% accuracy, respectively, with an AUC-ROC of 0.91 and 0.92. We have integrated both the models in a user-friendly web app calculator, https://triage-COVID-19.herokuapp.com/, to showcase the potential deployment of such efforts at scale.
Abstract:Many countries are now experiencing the third wave of the COVID-19 pandemic straining the healthcare resources with an acute shortage of hospital beds and ventilators for the critically ill patients. This situation is especially worse in India with the second largest load of COVID-19 cases and a relatively resource-scarce medical infrastructure. Therefore, it becomes essential to triage the patients based on the severity of their disease and devote resources towards critically ill patients. Yan et al. 1 have published a very pertinent research that uses Machine learning (ML) methods to predict the outcome of COVID-19 patients based on their clinical parameters at the day of admission. They used the XGBoost algorithm, a type of ensemble model, to build the mortality prediction model. The final classifier is built through the sequential addition of multiple weak classifiers. The clinically operable decision rule was obtained from a 'single-tree XGBoost' and used lactic dehydrogenase (LDH), lymphocyte and high-sensitivity C-reactive protein (hs-CRP) values. This decision tree achieved a 100% survival prediction and 81% mortality prediction. However, these models have several technical challenges and do not provide an out of the box solution that can be deployed for other populations as has been reported in the "Matters Arising" section of Yan et al. Here, we show the limitations of this model by deploying it on one of the largest datasets of COVID-19 patients containing detailed clinical parameters collected from India.