Abstract:In pseudonymous online fora like Reddit, the benefits of self-disclosure are often apparent to users (e.g., I can vent about my in-laws to understanding strangers), but the privacy risks are more abstract (e.g., will my partner be able to tell that this is me?). Prior work has sought to develop natural language processing (NLP) tools that help users identify potentially risky self-disclosures in their text, but none have been designed for or evaluated with the users they hope to protect. Absent this assessment, these tools will be limited by the social-technical gap: users need assistive tools that help them make informed decisions, not paternalistic tools that tell them to avoid self-disclosure altogether. To bridge this gap, we conducted a study with N = 21 Reddit users; we had them use a state-of-the-art NLP disclosure detection model on two of their authored posts and asked them questions to understand if and how the model helped, where it fell short, and how it could be improved to help them make more informed decisions. Despite its imperfections, users responded positively to the model and highlighted its use as a tool that can help them catch mistakes, inform them of risks they were unaware of, and encourage self-reflection. However, our work also shows how, to be useful and usable, AI for supporting privacy decision-making must account for posting context, disclosure norms, and users' lived threat models, and provide explanations that help contextualize detected risks.
Abstract:Self-disclosure, while being common and rewarding in social media interaction, also poses privacy risks. In this paper, we take the initiative to protect the user-side privacy associated with online self-disclosure through identification and abstraction. We develop a taxonomy of 19 self-disclosure categories, and curate a large corpus consisting of 4.8K annotated disclosure spans. We then fine-tune a language model for identification, achieving over 75% in Token F$_1$. We further conduct a HCI user study, with 82\% of participants viewing the model positively, highlighting its real world applicability. Motivated by the user feedback, we introduce the task of self-disclosure abstraction. We experiment with both one-span abstraction and three-span abstraction settings, and explore multiple fine-tuning strategies. Our best model can generate diverse abstractions that moderately reduce privacy risks while maintaining high utility according to human evaluation.