Escuela de Ingenierías, Universidad de León
Abstract:Social Network Analysis (SNA) is a set of techniques developed in the field of social and behavioral sciences research, in order to characterize and study the social relationships that are established among a set of individuals. When building a social network for performing an SNA analysis, an initial process of data gathering is achieved in order to extract the characteristics of the individuals and their relationships. This is usually done by completing a questionnaire containing different types of questions that will be later used to obtain the SNA measures needed to perform the study. There are, then, a great number of different possible network generating questions and also many possibilities for mapping the responses to the corresponding characteristics and relationships. Many variations may be introduced into these questions (the way they are posed, the weights given to each of the responses, etc.) that may have an effect on the resulting networks. All these different variations are difficult to achieve manually, because the process is time-consuming and error prone. The tool described in this paper uses semantic knowledge representation techniques in order to facilitate this kind of sensitivity studies. The base of the tool is a conceptual structure, called "ontology" that is able to represent the different concepts and their definitions. The tool is compared to other similar ones, and the advantages of the approach are highlighted, giving some particular examples from an ongoing SNA study about alcohol consumption habits in adolescents.
Abstract:There is a great concern nowadays regarding alcohol consumption and drug abuse, especially in young people. Analyzing the social environment where these adolescents are immersed, as well as a series of measures determining the alcohol abuse risk or personal situation and perception using a number of questionnaires like AUDIT, FAS, KIDSCREEN, and others, it is possible to gain insight into the current situation of a given individual regarding his/her consumption behavior. But this analysis, in order to be achieved, requires the use of tools that can ease the process of questionnaire creation, data gathering, curation and representation, and later analysis and visualization to the user. This research presents the design and construction of a web-based platform able to facilitate each of the mentioned processes by integrating the different phases into an intuitive system with a graphical user interface that hides the complexity underlying each of the questionnaires and techniques used and presenting the results in a flexible and visual way, avoiding any manual handling of data during the process. Advantages of this approach are shown and compared to the previous situation where some of the tasks were accomplished by time consuming and error prone manipulations of data.
Abstract:The large number of sensors and actuators that make up the Internet of Things obliges these systems to use diverse technologies and protocols. This means that IoT networks are more heterogeneous than traditional networks. This gives rise to new challenges in cybersecurity to protect these systems and devices which are characterized by being connected continuously to the Internet. Intrusion detection systems (IDS) are used to protect IoT systems from the various anomalies and attacks at the network level. Intrusion Detection Systems (IDS) can be improved through machine learning techniques. Our work focuses on creating classification models that can feed an IDS using a dataset containing frames under attacks of an IoT system that uses the MQTT protocol. We have addressed two types of method for classifying the attacks, ensemble methods and deep learning models, more specifically recurrent networks with very satisfactory results.