Research Institute of Applied Sciences in Cybersecurity, Universidad de León
Abstract:Robust road surface estimation is required for autonomous ground vehicles to navigate safely. Despite it becoming one of the main targets for autonomous mobility researchers in recent years, it is still an open problem in which cameras and LiDAR sensors have demonstrated to be adequate to predict the position, size and shape of the road a vehicle is driving on in different environments. In this work, a novel Convolutional Neural Network model is proposed for the accurate estimation of the roadway surface. Furthermore, an ablation study has been conducted to investigate how different encoding strategies affect model performance, testing 6 slightly different neural network architectures. Our model is based on the use of a Twin Encoder-Decoder Neural Network (TEDNet) for independent camera and LiDAR feature extraction, and has been trained and evaluated on the Kitti-Road dataset. Bird's Eye View projections of the camera and LiDAR data are used in this model to perform semantic segmentation on whether each pixel belongs to the road surface. The proposed method performs among other state-of-the-art methods and operates at the same frame-rate as the LiDAR and cameras, so it is adequate for its use in real-time applications.
Abstract:Cardiovascular diseases state as one of the greatest risks of death for the general population. Late detection in heart diseases highly conditions the chances of survival for patients. Age, sex, cholesterol level, sugar level, heart rate, among other factors, are known to have an influence on life-threatening heart problems, but, due to the high amount of variables, it is often difficult for an expert to evaluate each patient taking this information into account. In this manuscript, the authors propose using deep learning methods, combined with feature augmentation techniques for evaluating whether patients are at risk of suffering cardiovascular disease. The results of the proposed methods outperform other state of the art methods by 4.4%, leading to a precision of a 90%, which presents a significant improvement, even more so when it comes to an affliction that affects a large population.
Abstract:Parkinson's disease is easy to diagnose when it is advanced, but it is very difficult to diagnose in its early stages. Early diagnosis is essential to be able to treat the symptoms. It impacts on daily activities and reduces the quality of life of both the patients and their families and it is also the second most prevalent neurodegenerative disorder after Alzheimer in people over the age of 60. Most current studies on the prediction of Parkinson's severity are carried out in advanced stages of the disease. In this work, the study analyzes a set of variables that can be easily extracted from voice analysis, making it a very non-intrusive technique. In this paper, a method based on different deep learning techniques is proposed with two purposes. On the one hand, to find out if a person has severe or non-severe Parkinson's disease, and on the other hand, to determine by means of regression techniques the degree of evolution of the disease in a given patient. The UPDRS (Unified Parkinson's Disease Rating Scale) has been used by taking into account both the motor and total labels, and the best results have been obtained using a mixed multi-layer perceptron (MLP) that classifies and regresses at the same time and the most important features of the data obtained are taken as input, using an autoencoder. A success rate of 99.15% has been achieved in the problem of predicting whether a person suffers from severe Parkinson's disease or non-severe Parkinson's disease. In the degree of disease involvement prediction problem case, a MSE (Mean Squared Error) of 0.15 has been obtained. Using a full deep learning pipeline for data preprocessing and classification has proven to be very promising in the field Parkinson's outperforming the state-of-the-art proposals.
Abstract:The large number of sensors and actuators that make up the Internet of Things obliges these systems to use diverse technologies and protocols. This means that IoT networks are more heterogeneous than traditional networks. This gives rise to new challenges in cybersecurity to protect these systems and devices which are characterized by being connected continuously to the Internet. Intrusion detection systems (IDS) are used to protect IoT systems from the various anomalies and attacks at the network level. Intrusion Detection Systems (IDS) can be improved through machine learning techniques. Our work focuses on creating classification models that can feed an IDS using a dataset containing frames under attacks of an IoT system that uses the MQTT protocol. We have addressed two types of method for classifying the attacks, ensemble methods and deep learning models, more specifically recurrent networks with very satisfactory results.