Abstract:There is a great concern nowadays regarding alcohol consumption and drug abuse, especially in young people. Analyzing the social environment where these adolescents are immersed, as well as a series of measures determining the alcohol abuse risk or personal situation and perception using a number of questionnaires like AUDIT, FAS, KIDSCREEN, and others, it is possible to gain insight into the current situation of a given individual regarding his/her consumption behavior. But this analysis, in order to be achieved, requires the use of tools that can ease the process of questionnaire creation, data gathering, curation and representation, and later analysis and visualization to the user. This research presents the design and construction of a web-based platform able to facilitate each of the mentioned processes by integrating the different phases into an intuitive system with a graphical user interface that hides the complexity underlying each of the questionnaires and techniques used and presenting the results in a flexible and visual way, avoiding any manual handling of data during the process. Advantages of this approach are shown and compared to the previous situation where some of the tasks were accomplished by time consuming and error prone manipulations of data.
Abstract:Aim: To study the existence of subgroups by exploring the similarities between the attributes of the nodes of the groups, in relation to diet and gender and, to analyse the connectivity between groups based on aspects of similarities between them through SNA and artificial intelligence techniques. Methods: 235 students from 5 different educational centres participate in this study between March and December 2015. Data analysis carried out is divided into two blocks: social network analysis and unsupervised machine learning techniques. As for the social network analysis, the Girvan-Newman technique was applied to find the best number of cohesive groups within each of the friendship networks of the different classes analysed. Results: After applying Girvan-Newman in the three classes, the best division into clusters was respectively 2 for classroom A, 7 for classroom B and 6 for classroom C. There are significant differences between the groups and the gender and diet variables. After applying K-means using population diet as an input variable, a K-means clustering of 2 clusters for class A, 3 clusters for class B and 3 clusters for class C is obtained. Conclusion: Adolescents form subgroups within their classrooms. Subgroup cohesion is defined by the fact that nodes share similarities in aspects that influence obesity, they share attributes related to food quality and gender. The concept of homophily, related to SNA, justifies our results. Artificial intelligence techniques together with the application of the Girvan-Newman provide robustness to the structural analysis of similarities and cohesion between subgroups.