Abstract:Predictive process monitoring aims to predict future characteristics of an ongoing process case, such as case outcome or remaining timestamp. Recently, several predictive process monitoring methods based on deep learning such as Long Short-Term Memory or Convolutional Neural Network have been proposed to address the problem of next event prediction. However, due to insufficient training data or sub-optimal network configuration and architecture, these approaches do not generalize well the problem at hand. This paper proposes a novel adversarial training framework to address this shortcoming, based on an adaptation of Generative Adversarial Networks (GANs) to the realm of sequential temporal data. The training works by putting one neural network against the other in a two-player game (hence the adversarial nature) which leads to predictions that are indistinguishable from the ground truth. We formally show that the worst-case accuracy of the proposed approach is at least equal to the accuracy achieved in non-adversarial settings. From the experimental evaluation it emerges that the approach systematically outperforms all baselines both in terms of accuracy and earliness of the prediction, despite using a simple network architecture and a naive feature encoding. Moreover, the approach is more robust, as its accuracy is not affected by fluctuations over the case length.
Abstract:Predictive business process monitoring methods exploit historical process execution logs to generate predictions about running instances (called cases) of a business process, such as the prediction of the outcome, next activity or remaining cycle time of a given process case. These insights could be used to support operational managers in taking remedial actions as business processes unfold, e.g. shifting resources from one case onto another to ensure this latter is completed on time. A number of methods to tackle the remaining cycle time prediction problem have been proposed in the literature. However, due to differences in their experimental setup, choice of datasets, evaluation measures and baselines, the relative merits of each method remain unclear. This article presents a systematic literature review and taxonomy of methods for remaining time prediction in the context of business processes, as well as a cross-benchmark comparison of 16 such methods based on 16 real-life datasets originating from different industry domains.
Abstract:Predictive business process monitoring methods exploit logs of completed cases of a process in order to make predictions about running cases thereof. Existing methods in this space are tailor-made for specific prediction tasks. Moreover, their relative accuracy is highly sensitive to the dataset at hand, thus requiring users to engage in trial-and-error and tuning when applying them in a specific setting. This paper investigates Long Short-Term Memory (LSTM) neural networks as an approach to build consistently accurate models for a wide range of predictive process monitoring tasks. First, we show that LSTMs outperform existing techniques to predict the next event of a running case and its timestamp. Next, we show how to use models for predicting the next task in order to predict the full continuation of a running case. Finally, we apply the same approach to predict the remaining time, and show that this approach outperforms existing tailor-made methods.