Abstract:Explainable AI (XAI) can greatly enhance user trust and satisfaction in AI-assisted decision-making processes. Recent findings suggest that a single explainer may not meet the diverse needs of multiple users in an AI system; indeed, even individual users may require multiple explanations. This highlights the necessity for a "multi-shot" approach, employing a combination of explainers to form what we introduce as an "explanation strategy". Tailored to a specific user or a user group, an "explanation experience" describes interactions with personalised strategies designed to enhance their AI decision-making processes. The iSee platform is designed for the intelligent sharing and reuse of explanation experiences, using Case-based Reasoning to advance best practices in XAI. The platform provides tools that enable AI system designers, i.e. design users, to design and iteratively revise the most suitable explanation strategy for their AI system to satisfy end-user needs. All knowledge generated within the iSee platform is formalised by the iSee ontology for interoperability. We use a summative mixed methods study protocol to evaluate the usability and utility of the iSee platform with six design users across varying levels of AI and XAI expertise. Our findings confirm that the iSee platform effectively generalises across applications and its potential to promote the adoption of XAI best practices.
Abstract:Explainable Artificial Intelligence (XAI) aims to improve the transparency of autonomous decision-making through explanations. Recent literature has emphasised users' need for holistic "multi-shot" explanations and the ability to personalise their engagement with XAI systems. We refer to this user-centred interaction as an XAI Experience. Despite advances in creating XAI experiences, evaluating them in a user-centred manner has remained challenging. To address this, we introduce the XAI Experience Quality (XEQ) Scale (pronounced "Seek" Scale), for evaluating the user-centred quality of XAI experiences. Furthermore, XEQ quantifies the quality of experiences across four evaluation dimensions: learning, utility, fulfilment and engagement. These contributions extend the state-of-the-art of XAI evaluation, moving beyond the one-dimensional metrics frequently developed to assess single-shot explanations. In this paper, we present the XEQ scale development and validation process, including content validation with XAI experts as well as discriminant and construct validation through a large-scale pilot study. Out pilot study results offer strong evidence that establishes the XEQ Scale as a comprehensive framework for evaluating user-centred XAI experiences.
Abstract:Retrieval-Augmented Generation (RAG) enhances Large Language Model (LLM) output by providing prior knowledge as context to input. This is beneficial for knowledge-intensive and expert reliant tasks, including legal question-answering, which require evidence to validate generated text outputs. We highlight that Case-Based Reasoning (CBR) presents key opportunities to structure retrieval as part of the RAG process in an LLM. We introduce CBR-RAG, where CBR cycle's initial retrieval stage, its indexing vocabulary, and similarity knowledge containers are used to enhance LLM queries with contextually relevant cases. This integration augments the original LLM query, providing a richer prompt. We present an evaluation of CBR-RAG, and examine different representations (i.e. general and domain-specific embeddings) and methods of comparison (i.e. inter, intra and hybrid similarity) on the task of legal question-answering. Our results indicate that the context provided by CBR's case reuse enforces similarity between relevant components of the questions and the evidence base leading to significant improvements in the quality of generated answers.
Abstract:Counterfactual explanations focus on "actionable knowledge" to help end-users understand how a machine learning outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to discover input dependencies that relate to outcome changes. Identifying the minimum subset of feature changes needed to action an output change in the decision is an interesting challenge for counterfactual explainers. The DisCERN algorithm introduced in this paper is a case-based counter-factual explainer. Here counterfactuals are formed by replacing feature values from a nearest unlike neighbour (NUN) until an actionable change is observed. We show how widely adopted feature relevance-based explainers (i.e. LIME, SHAP), can inform DisCERN to identify the minimum subset of "actionable features". We demonstrate our DisCERN algorithm on five datasets in a comparative study with the widely used optimisation-based counterfactual approach DiCE. Our results demonstrate that DisCERN is an effective strategy to minimise actionable changes necessary to create good counterfactual explanations.