Abstract:Automatic patent summarization approaches that help in the patent analysis and comprehension procedure are in high demand due to the colossal growth of innovations. The development of natural language processing (NLP), text mining, and deep learning has notably amplified the efficacy of text summarization models for abundant types of documents. Summarizing patent text remains a pertinent challenge due to the labyrinthine writing style of these documents, which includes technical and legal intricacies. Additionally, these patent document contents are considerably lengthier than archetypal documents, which intricates the process of extracting pertinent information for summarization. Embodying extractive and abstractive text summarization methodologies into a hybrid framework, this study proposes a system for efficiently creating abstractive summaries of patent records. The procedure involves leveraging the LexRank graph-based algorithm to retrieve the important sentences from input parent texts, then utilizing a Bidirectional Auto-Regressive Transformer (BART) model that has been fine-tuned using Low-Ranking Adaptation (LoRA) for producing text summaries. This is accompanied by methodical testing and evaluation strategies. Furthermore, the author employed certain meta-learning techniques to achieve Domain Generalization (DG) of the abstractive component across multiple patent fields.
Abstract:The substantial growth of textual content in diverse domains and platforms has led to a considerable need for Automatic Text Summarization (ATS) techniques that aid in the process of text analysis. The effectiveness of text summarization models has been significantly enhanced in a variety of technical domains because of advancements in Natural Language Processing (NLP) and Deep Learning (DL). Despite this, the process of summarizing textual information continues to be significantly constrained by the intricate writing styles of a variety of texts, which involve a range of technical complexities. Text summarization techniques can be broadly categorized into two main types: abstractive summarization and extractive summarization. Extractive summarization involves directly extracting sentences, phrases, or segments of text from the content without making any changes. On the other hand, abstractive summarization is achieved by reconstructing the sentences, phrases, or segments from the original text using linguistic analysis. Through this study, a linguistically diverse categorizations of text summarization approaches have been addressed in a constructive manner. In this paper, the authors explored existing hybrid techniques that have employed both extractive and abstractive methodologies. In addition, the pros and cons of various approaches discussed in the literature are also investigated. Furthermore, the authors conducted a comparative analysis on different techniques and matrices to evaluate the generated summaries using language generation models. This survey endeavors to provide a comprehensive overview of ATS by presenting the progression of language processing regarding this task through a breakdown of diverse systems and architectures accompanied by technical and mathematical explanations of their operations.
Abstract:The paper overviews the shared task on Real-Time Reverse Transliteration for Romanized Indo-Aryan languages. It focuses on the reverse transliteration of low-resourced languages in the Indo-Aryan family to their native scripts. Typing Romanized Indo-Aryan languages using ad-hoc transliterals and achieving accurate native scripts are complex and often inaccurate processes with the current keyboard systems. This task aims to introduce and evaluate a real-time reverse transliterator that converts Romanized Indo-Aryan languages to their native scripts, improving the typing experience for users. Out of 11 registered teams, four teams participated in the final evaluation phase with transliteration models for Sinhala, Hindi and Malayalam. These proposed solutions not only solve the issue of ad-hoc transliteration but also empower low-resource language usability in the digital arena.
Abstract:Retrieval-Augmented Generation (RAG) enhances Large Language Model (LLM) output by providing prior knowledge as context to input. This is beneficial for knowledge-intensive and expert reliant tasks, including legal question-answering, which require evidence to validate generated text outputs. We highlight that Case-Based Reasoning (CBR) presents key opportunities to structure retrieval as part of the RAG process in an LLM. We introduce CBR-RAG, where CBR cycle's initial retrieval stage, its indexing vocabulary, and similarity knowledge containers are used to enhance LLM queries with contextually relevant cases. This integration augments the original LLM query, providing a richer prompt. We present an evaluation of CBR-RAG, and examine different representations (i.e. general and domain-specific embeddings) and methods of comparison (i.e. inter, intra and hybrid similarity) on the task of legal question-answering. Our results indicate that the context provided by CBR's case reuse enforces similarity between relevant components of the questions and the evidence base leading to significant improvements in the quality of generated answers.