Abstract:Communication efficiency is a widely recognised research problem in Federated Learning (FL), with recent work focused on developing techniques for efficient compression, distribution and aggregation of model parameters between clients and the server. Particularly within distributed systems, it is important to balance the need for computational cost and communication efficiency. However, existing methods are often constrained to specific applications and are less generalisable. In this paper, we introduce FedFT (federated frequency-space transformation), a simple yet effective methodology for communicating model parameters in a FL setting. FedFT uses Discrete Cosine Transform (DCT) to represent model parameters in frequency space, enabling efficient compression and reducing communication overhead. FedFT is compatible with various existing FL methodologies and neural architectures, and its linear property eliminates the need for multiple transformations during federated aggregation. This methodology is vital for distributed solutions, tackling essential challenges like data privacy, interoperability, and energy efficiency inherent to these environments. We demonstrate the generalisability of the FedFT methodology on four datasets using comparative studies with three state-of-the-art FL baselines (FedAvg, FedProx, FedSim). Our results demonstrate that using FedFT to represent the differences in model parameters between communication rounds in frequency space results in a more compact representation compared to representing the entire model in frequency space. This leads to a reduction in communication overhead, while keeping accuracy levels comparable and in some cases even improving it. Our results suggest that this reduction can range from 5% to 30% per client, depending on dataset.
Abstract:Explainable AI (XAI) can greatly enhance user trust and satisfaction in AI-assisted decision-making processes. Recent findings suggest that a single explainer may not meet the diverse needs of multiple users in an AI system; indeed, even individual users may require multiple explanations. This highlights the necessity for a "multi-shot" approach, employing a combination of explainers to form what we introduce as an "explanation strategy". Tailored to a specific user or a user group, an "explanation experience" describes interactions with personalised strategies designed to enhance their AI decision-making processes. The iSee platform is designed for the intelligent sharing and reuse of explanation experiences, using Case-based Reasoning to advance best practices in XAI. The platform provides tools that enable AI system designers, i.e. design users, to design and iteratively revise the most suitable explanation strategy for their AI system to satisfy end-user needs. All knowledge generated within the iSee platform is formalised by the iSee ontology for interoperability. We use a summative mixed methods study protocol to evaluate the usability and utility of the iSee platform with six design users across varying levels of AI and XAI expertise. Our findings confirm that the iSee platform effectively generalises across applications and its potential to promote the adoption of XAI best practices.
Abstract:Counterfactual explanations focus on "actionable knowledge" to help end-users understand how a machine learning outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to discover input dependencies that relate to outcome changes. Identifying the minimum subset of feature changes needed to action an output change in the decision is an interesting challenge for counterfactual explainers. The DisCERN algorithm introduced in this paper is a case-based counter-factual explainer. Here counterfactuals are formed by replacing feature values from a nearest unlike neighbour (NUN) until an actionable change is observed. We show how widely adopted feature relevance-based explainers (i.e. LIME, SHAP), can inform DisCERN to identify the minimum subset of "actionable features". We demonstrate our DisCERN algorithm on five datasets in a comparative study with the widely used optimisation-based counterfactual approach DiCE. Our results demonstrate that DisCERN is an effective strategy to minimise actionable changes necessary to create good counterfactual explanations.
Abstract:Delivery of digital behaviour change interventions which encourage physical activity has been tried in many forms. Most often interventions are delivered as text notifications, but these do not promote interaction. Advances in conversational AI have improved natural language understanding and generation, allowing AI chatbots to provide an engaging experience with the user. For this reason, chatbots have recently been seen in healthcare delivering digital interventions through free text or choice selection. In this work, we explore the use of voice-based AI chatbots as a novel mode of intervention delivery, specifically targeting older adults to encourage physical activity. We co-created "FitChat", an AI chatbot, with older adults and we evaluate the first prototype using Think Aloud Sessions. Our thematic evaluation suggests that older adults prefer voice-based chat over text notifications or free text entry and that voice is a powerful mode for encouraging motivation.