Abstract:In this paper, an automatic labelling process is presented for automotive datasets, leveraging on complementary information from LiDAR and camera. The generated labels are then used as ground truth with the corresponding 4D radar data as inputs to a proposed semantic segmentation network, to associate a class label to each spatial voxel. Promising results are shown by applying both approaches to the publicly shared RaDelft dataset, with the proposed network achieving over 65% of the LiDAR detection performance, improving 13.2% in vehicle detection probability, and reducing 0.54 m in terms of Chamfer distance, compared to variants inspired from the literature.
Abstract:The detection of multiple extended targets in complex environments using high-resolution automotive radar is considered. A data-driven approach is proposed where unlabeled synchronized lidar data is used as ground truth to train a neural network with only radar data as input. To this end, the novel, large-scale, real-life, and multi-sensor RaDelft dataset has been recorded using a demonstrator vehicle in different locations in the city of Delft. The dataset, as well as the documentation and example code, is publicly available for those researchers in the field of automotive radar or machine perception. The proposed data-driven detector is able to generate lidar-like point clouds using only radar data from a high-resolution system, which preserves the shape and size of extended targets. The results are compared against conventional CFAR detectors as well as variations of the method to emulate the available approaches in the literature, using the probability of detection, the probability of false alarm, and the Chamfer distance as performance metrics. Moreover, an ablation study was carried out to assess the impact of Doppler and temporal information on detection performance. The proposed method outperforms the different baselines in terms of Chamfer distance, achieving a reduction of 75% against conventional CFAR detectors and 10% against the modified state-of-the-art deep learning-based approaches.
Abstract:In this paper, we address the limitations of traditional constant false alarm rate (CFAR) target detectors in automotive radars, particularly in complex urban environments with multiple objects that appear as extended targets. We propose a data-driven radar target detector exploiting a highly efficient 2D CNN backbone inspired by the computer vision domain. Our approach is distinguished by a unique cross sensor supervision pipeline, enabling it to learn exclusively from unlabeled synchronized radar and lidar data, thus eliminating the need for costly manual object annotations. Using a novel large-scale, real-life multi-sensor dataset recorded in various driving scenarios, we demonstrate that the proposed detector generates dense, lidar-like point clouds, achieving a lower Chamfer distance to the reference lidar point clouds than CFAR detectors. Overall, it significantly outperforms CFAR baselines detection accuracy.
Abstract:A novel framework to enhance the angular resolution of automotive radars is proposed. An approach to enlarge the antenna aperture using artificial neural networks is developed using a self-supervised learning scheme. Data from a high angular resolution radar, i.e., a radar with a large antenna aperture, is used to train a deep neural network to extrapolate the antenna element's response. Afterward, the trained network is used to enhance the angular resolution of compact, low-cost radars. One million scenarios are simulated in a Monte-Carlo fashion, varying the number of targets, their Radar Cross Section (RCS), and location to evaluate the method's performance. Finally, the method is tested in real automotive data collected outdoors with a commercial radar system. A significant increase in the ability to resolve targets is demonstrated, which can translate to more accurate and faster responses from the planning and decision making system of the vehicle.