Abstract:In this paper, we propose to utilise diffusion models for data augmentation in speech emotion recognition (SER). In particular, we present an effective approach to utilise improved denoising diffusion probabilistic models (IDDPM) to generate synthetic emotional data. We condition the IDDPM with the textual embedding from bidirectional encoder representations from transformers (BERT) to generate high-quality synthetic emotional samples in different speakers' voices\footnote{synthetic samples URL: \url{https://emulationai.com/research/diffusion-ser.}}. We implement a series of experiments and show that better quality synthetic data helps improve SER performance. We compare results with generative adversarial networks (GANs) and show that the proposed model generates better-quality synthetic samples that can considerably improve the performance of SER when augmented with synthetic data.
Abstract:Non-speech emotion recognition has a wide range of applications including healthcare, crime control and rescue, and entertainment, to name a few. Providing these applications using edge computing has great potential, however, recent studies are focused on speech-emotion recognition using complex architectures. In this paper, a non-speech-based emotion recognition system is proposed, which can rely on edge computing to analyse emotions conveyed through non-speech expressions like screaming and crying. In particular, we explore knowledge distillation to design a computationally efficient system that can be deployed on edge devices with limited resources without degrading the performance significantly. We comprehensively evaluate our proposed framework using two publicly available datasets and highlight its effectiveness by comparing the results with the well-known MobileNet model. Our results demonstrate the feasibility and effectiveness of using edge computing for non-speech emotion detection, which can potentially improve applications that rely on emotion detection in communication networks. To the best of our knowledge, this is the first work on an edge-computing-based framework for detecting emotions in non-speech audio, offering promising directions for future research.