Abstract:Human motion synthesis is an important task in computer graphics and computer vision. While focusing on various conditioning signals such as text, action class, or audio to guide the generation process, most existing methods utilize skeleton-based pose representation, requiring additional skinning to produce renderable meshes. Given that human motion is a complex interplay of bones, joints, and muscles, considering solely the skeleton for generation may neglect their inherent interdependency, which can limit the variability and precision of the generated results. To address this issue, we propose a Shape-conditioned Motion Diffusion model (SMD), which enables the generation of motion sequences directly in mesh format, conditioned on a specified target mesh. In SMD, the input meshes are transformed into spectral coefficients using graph Laplacian, to efficiently represent meshes. Subsequently, we propose a Spectral-Temporal Autoencoder (STAE) to leverage cross-temporal dependencies within the spectral domain. Extensive experimental evaluations show that SMD not only produces vivid and realistic motions but also achieves competitive performance in text-to-motion and action-to-motion tasks when compared to state-of-the-art methods.
Abstract:We present a knowledge augmentation strategy for assessing the diagnostic groups and gait impairment from monocular gait videos. Based on a large-scale pre-trained Vision Language Model (VLM), our model learns and improves visual, textual, and numerical representations of patient gait videos, through a collective learning across three distinct modalities: gait videos, class-specific descriptions, and numerical gait parameters. Our specific contributions are two-fold: First, we adopt a knowledge-aware prompt tuning strategy to utilize the class-specific medical description in guiding the text prompt learning. Second, we integrate the paired gait parameters in the form of numerical texts to enhance the numeracy of the textual representation. Results demonstrate that our model not only significantly outperforms state-of-the-art (SOTA) in video-based classification tasks but also adeptly decodes the learned class-specific text features into natural language descriptions using the vocabulary of quantitative gait parameters. The code and the model will be made available at our project page.
Abstract:Facial expression generation is one of the most challenging and long-sought aspects of character animation, with many interesting applications. The challenging task, traditionally having relied heavily on digital craftspersons, remains yet to be explored. In this paper, we introduce a generative framework for generating 3D facial expression sequences (i.e. 4D faces) that can be conditioned on different inputs to animate an arbitrary 3D face mesh. It is composed of two tasks: (1) Learning the generative model that is trained over a set of 3D landmark sequences, and (2) Generating 3D mesh sequences of an input facial mesh driven by the generated landmark sequences. The generative model is based on a Denoising Diffusion Probabilistic Model (DDPM), which has achieved remarkable success in generative tasks of other domains. While it can be trained unconditionally, its reverse process can still be conditioned by various condition signals. This allows us to efficiently develop several downstream tasks involving various conditional generation, by using expression labels, text, partial sequences, or simply a facial geometry. To obtain the full mesh deformation, we then develop a landmark-guided encoder-decoder to apply the geometrical deformation embedded in landmarks on a given facial mesh. Experiments show that our model has learned to generate realistic, quality expressions solely from the dataset of relatively small size, improving over the state-of-the-art methods. Videos and qualitative comparisons with other methods can be found at https://github.com/ZOUKaifeng/4DFM. Code and models will be made available upon acceptance.