Abstract:General-purpose navigation in challenging environments remains a significant problem in robotics, with current state-of-the-art approaches facing myriad limitations. Classical approaches struggle with cluttered settings and require extensive tuning, while learning-based methods face difficulties generalizing to out-of-distribution environments. This paper introduces X-Mobility, an end-to-end generalizable navigation model that overcomes existing challenges by leveraging three key ideas. First, X-Mobility employs an auto-regressive world modeling architecture with a latent state space to capture world dynamics. Second, a diverse set of multi-head decoders enables the model to learn a rich state representation that correlates strongly with effective navigation skills. Third, by decoupling world modeling from action policy, our architecture can train effectively on a variety of data sources, both with and without expert policies: off-policy data allows the model to learn world dynamics, while on-policy data with supervisory control enables optimal action policy learning. Through extensive experiments, we demonstrate that X-Mobility not only generalizes effectively but also surpasses current state-of-the-art navigation approaches. Additionally, X-Mobility also achieves zero-shot Sim2Real transferability and shows strong potential for cross-embodiment generalization.
Abstract:We present our findings in the gap between theory and practice of using conditional energy-based models (EBM) as an implicit representation for behavior-cloned policies. We also clarify several subtle, and potentially confusing, details in previous work in an attempt to help future research in this area. We point out key differences between unconditional and conditional EBMs, and warn that blindly applying training methods for one to the other could lead to undesirable results that do not generalize well. Finally, we emphasize the importance of the Maximum Mutual Information principle as a necessary condition to achieve good generalization in conditional EBMs as implicit models for regression tasks.