Abstract:This paper proposes a novel zero-shot composed image retrieval (CIR) method considering the query-target relationship by masked image-text pairs. The objective of CIR is to retrieve the target image using a query image and a query text. Existing methods use a textual inversion network to convert the query image into a pseudo word to compose the image and text and use a pre-trained visual-language model to realize the retrieval. However, they do not consider the query-target relationship to train the textual inversion network to acquire information for retrieval. In this paper, we propose a novel zero-shot CIR method that is trained end-to-end using masked image-text pairs. By exploiting the abundant image-text pairs that are convenient to obtain with a masking strategy for learning the query-target relationship, it is expected that accurate zero-shot CIR using a retrieval-focused textual inversion network can be realized. Experimental results show the effectiveness of the proposed method.
Abstract:As a model-free optimization and decision-making method, deep reinforcement learning (DRL) has been widely applied to the filed of energy management in energy Internet. While, some DRL-based energy management schemes also incorporate the prediction module used by the traditional model-based methods, which seems to be unnecessary and even adverse. In this work, we present the standard DRL-based energy management scheme with and without prediction. Then, these two schemes are compared in the unified energy management framework. The simulation results demonstrate that the energy management scheme without prediction is superior over the scheme with prediction. This work intends to rectify the misuse of DRL methods in the field of energy management.