Abstract:As a scalable data-driven approach, multi-agent reinforcement learning (MARL) has made remarkable advances in solving the cooperative residential load scheduling problems. However, the common centralized training strategy of MARL algorithms raises privacy risks for involved households. In this work, we propose a privacy-preserving multi-agent actor-critic framework where the decentralized actors are trained with distributed critics, such that both the decentralized execution and the distributed training do not require the global state information. The proposed framework can preserve the privacy of the households while simultaneously learn the multi-agent credit assignment mechanism implicitly. The simulation experiments demonstrate that the proposed framework significantly outperforms the existing privacy-preserving actor-critic framework, and can achieve comparable performance to the state-of-the-art actor-critic framework without privacy constraints.
Abstract:As a model-free optimization and decision-making method, deep reinforcement learning (DRL) has been widely applied to the filed of energy management in energy Internet. While, some DRL-based energy management schemes also incorporate the prediction module used by the traditional model-based methods, which seems to be unnecessary and even adverse. In this work, we present the standard DRL-based energy management scheme with and without prediction. Then, these two schemes are compared in the unified energy management framework. The simulation results demonstrate that the energy management scheme without prediction is superior over the scheme with prediction. This work intends to rectify the misuse of DRL methods in the field of energy management.