Abstract:Place is an important element in visual understanding. Given a photo of a building, people can often tell its functionality, e.g. a restaurant or a shop, its cultural style, e.g. Asian or European, as well as its economic type, e.g. industry oriented or tourism oriented. While place recognition has been widely studied in previous work, there remains a long way towards comprehensive place understanding, which is far beyond categorizing a place with an image and requires information of multiple aspects. In this work, we contribute Placepedia, a large-scale place dataset with more than 35M photos from 240K unique places. Besides the photos, each place also comes with massive multi-faceted information, e.g. GDP, population, etc., and labels at multiple levels, including function, city, country, etc.. This dataset, with its large amount of data and rich annotations, allows various studies to be conducted. Particularly, in our studies, we develop 1) PlaceNet, a unified framework for multi-level place recognition, and 2) a method for city embedding, which can produce a vector representation for a city that captures both visual and multi-faceted side information. Such studies not only reveal key challenges in place understanding, but also establish connections between visual observations and underlying socioeconomic/cultural implications.
Abstract:Recent works have shown that exploiting unlabeled data through label propagation can substantially reduce the labeling cost, which has been a critical issue in developing visual recognition models. Yet, how to propagate labels reliably, especially on a dataset with unknown outliers, remains an open question. Conventional methods such as linear diffusion lack the capability of handling complex graph structures and may perform poorly when the seeds are sparse. Latest methods based on graph neural networks would face difficulties on performance drop as they scale out to noisy graphs. To overcome these difficulties, we propose a new framework that allows labels to be propagated reliably on large-scale real-world data. This framework incorporates (1) a local graph neural network to predict accurately on varying local structures while maintaining high scalability, and (2) a confidence-based path scheduler that identifies outliers and moves forward the propagation frontier in a prudent way. Experiments on both ImageNet and Ms-Celeb-1M show that our confidence guided framework can significantly improve the overall accuracies of the propagated labels, especially when the graph is very noisy.