Abstract:Business and technology are intricately connected through logic and design. They are equally sensitive to societal changes and may be devastated by scandal. Cooperative multi-robot systems (MRSs) are on the rise, allowing robots of different types and brands to work together in diverse contexts. Generative artificial intelligence has been a dominant topic in recent artificial intelligence (AI) discussions due to its capacity to mimic humans through the use of natural language and the production of media, including deep fakes. In this article, we focus specifically on the conversational aspects of generative AI, and hence use the term Conversational Generative artificial intelligence (CGI). Like MRSs, CGIs have enormous potential for revolutionizing processes across sectors and transforming the way humans conduct business. From a business perspective, cooperative MRSs alone, with potential conflicts of interest, privacy practices, and safety concerns, require ethical examination. MRSs empowered by CGIs demand multi-dimensional and sophisticated methods to uncover imminent ethical pitfalls. This study focuses on ethics in CGI-empowered MRSs while reporting the stages of developing the MORUL model.
Abstract:Robustness against real-world distribution shifts is crucial for the successful deployment of object detection models in practical applications. In this paper, we address the problem of assessing and enhancing the robustness of object detection models against natural perturbations, such as varying lighting conditions, blur, and brightness. We analyze four state-of-the-art deep neural network models, Detr-ResNet-101, Detr-ResNet-50, YOLOv4, and YOLOv4-tiny, using the COCO 2017 dataset and ExDark dataset. By simulating synthetic perturbations with the AugLy package, we systematically explore the optimal level of synthetic perturbation required to improve the models robustness through data augmentation techniques. Our comprehensive ablation study meticulously evaluates the impact of synthetic perturbations on object detection models performance against real-world distribution shifts, establishing a tangible connection between synthetic augmentation and real-world robustness. Our findings not only substantiate the effectiveness of synthetic perturbations in improving model robustness, but also provide valuable insights for researchers and practitioners in developing more robust and reliable object detection models tailored for real-world applications.