Abstract:As one of the successful Transformer-based models in computer vision tasks, SegFormer demonstrates superior performance in semantic segmentation. Nevertheless, the high computational cost greatly challenges the deployment of SegFormer on edge devices. In this paper, we seek to design a lightweight SegFormer for efficient semantic segmentation. Based on the observation that neurons in SegFormer layers exhibit large variances across different images, we propose a dynamic gated linear layer, which prunes the most uninformative set of neurons based on the input instance. To improve the dynamically pruned SegFormer, we also introduce two-stage knowledge distillation to transfer the knowledge within the original teacher to the pruned student network. Experimental results show that our method can significantly reduce the computation overhead of SegFormer without an apparent performance drop. For instance, we can achieve 36.9% mIoU with only 3.3G FLOPs on ADE20K, saving more than 60% computation with the drop of only 0.5% in mIoU
Abstract:By implicitly recognizing a user based on his/her speech input, speaker identification enables many downstream applications, such as personalized system behavior and expedited shopping checkouts. Based on whether the speech content is constrained or not, both text-dependent (TD) and text-independent (TI) speaker recognition models may be used. We wish to combine the advantages of both types of models through an ensemble system to make more reliable predictions. However, any such combined approach has to be robust to incomplete inputs, i.e., when either TD or TI input is missing. As a solution we propose a fusion of embeddings network foenet architecture, combining joint learning with neural attention. We compare foenet with four competitive baseline methods on a dataset of voice assistant inputs, and show that it achieves higher accuracy than the baseline and score fusion methods, especially in the presence of incomplete inputs.