Abstract:360$^\circ$ videos have received widespread attention due to its realistic and immersive experiences for users. To date, how to accurately model the user perceptions on 360$^\circ$ display is still a challenging issue. In this paper, we exploit the visual characteristics of 360$^\circ$ projection and display and extend the popular just noticeable difference (JND) model to spherical JND (SJND). First, we propose a quantitative 2D-JND model by jointly considering spatial contrast sensitivity, luminance adaptation and texture masking effect. In particular, our model introduces an entropy-based region classification and utilizes different parameters for different types of regions for better modeling performance. Second, we extend our 2D-JND model to SJND by jointly exploiting latitude projection and field of view during 360$^\circ$ display. With this operation, SJND reflects both the characteristics of human vision system and the 360$^\circ$ display. Third, our SJND model is more consistent with user perceptions during subjective test and also shows more tolerance in distortions with fewer bit rates during 360$^\circ$ video compression. To further examine the effectiveness of our SJND model, we embed it in Versatile Video Coding (VVC) compression. Compared with the state-of-the-arts, our SJND-VVC framework significantly reduced the bit rate with negligible loss in visual quality.
Abstract:To assist underwater object detection for better performance, image enhancement technology is often used as a pre-processing step. However, most of the existing enhancement methods tend to pursue the visual quality of an image, instead of providing effective help for detection tasks. In fact, image enhancement algorithms should be optimized with the goal of utility improvement. In this paper, to adapt to the underwater detection tasks, we proposed a lightweight dynamic enhancement algorithm using a contribution dictionary to guide low-level corrections. Dynamic solutions are designed to capture differences in detection preferences. In addition, it can also balance the inconsistency between the contribution of correction operations and their time complexity. Experimental results in real underwater object detection tasks show the superiority of our proposed method in both generalization and real-time performance.