Abstract:We present a prompt-engineering-based text-augmentation approach applied to a language-queried audio source separation (LASS) task. To enhance the performance of LASS, the proposed approach utilizes large language models (LLMs) to generate multiple captions corresponding to each sentence of the training dataset. To this end, we first perform experiments to identify the most effective prompts for caption augmentation with a smaller number of captions. A LASS model trained with these augmented captions demonstrates improved performance on the DCASE 2024 Task 9 validation set compared to that trained without augmentation. This study highlights the effectiveness of LLM-based caption augmentation in advancing language-queried audio source separation.
Abstract:This report describes the submission system by the GIST-AiTeR team for the VoxCeleb Speaker Recognition Challenge 2023 (VoxSRC-23) Track 4. Our submission system focuses on implementing diverse speaker diarization (SD) techniques, including ResNet293 and MFA-Conformer with different combinations of segment and hop length. Then, those models are combined into an ensemble model. The ResNet293 and MFA-Conformer models exhibited the diarization error rates (DERs) of 3.65% and 3.83% on VAL46, respectively. The submitted ensemble model provided a DER of 3.50% on VAL46, and consequently, it achieved a DER of 4.88% on the VoxSRC-23 test set.
Abstract:This report proposes a frequency dynamic convolution (FDY) with a large kernel attention (LKA)-convolutional recurrent neural network (CRNN) with a pre-trained bidirectional encoder representation from audio transformers (BEATs) embedding-based sound event detection (SED) model that employs a mean-teacher and pseudo-label approach to address the challenge of limited labeled data for DCASE 2023 Task 4. The proposed FDY with LKA integrates the FDY and LKA module to effectively capture time-frequency patterns, long-term dependencies, and high-level semantic information in audio signals. The proposed FDY with LKA-CRNN with a BEATs embedding network is initially trained on the entire DCASE 2023 Task 4 dataset using the mean-teacher approach, generating pseudo-labels for weakly labeled, unlabeled, and the AudioSet. Subsequently, the proposed SED model is retrained using the same pseudo-label approach. A subset of these models is selected for submission, demonstrating superior F1-scores and polyphonic SED score performance on the DCASE 2023 Challenge Task 4 validation dataset.
Abstract:This report describes the submission system of the GIST-AiTeR team at the 2022 VoxCeleb Speaker Recognition Challenge (VoxSRC) Track 4. Our system mainly includes speech enhancement, voice activity detection , multi-scaled speaker embedding, probabilistic linear discriminant analysis-based speaker clustering, and overlapped speech detection models. We first construct four different diarization systems according to different model combinations with the best experimental efforts. Our final submission is an ensemble system of all the four systems and achieves a diarization error rate of 5.12% on the challenge evaluation set, ranked third at the diarization track of the challenge.
Abstract:End-to-end neural diarization (EEND) with self-attention directly predicts speaker labels from inputs and enables the handling of overlapped speech. Although the EEND outperforms clustering-based speaker diarization (SD), it cannot be further improved by simply increasing the number of encoder blocks because the last encoder block is dominantly supervised compared with lower blocks. This paper proposes a new residual auxiliary EEND (RX-EEND) learning architecture for transformers to enforce the lower encoder blocks to learn more accurately. The auxiliary loss is applied to the output of each encoder block, including the last encoder block. The effect of auxiliary loss on the learning of the encoder blocks can be further increased by adding a residual connection between the encoder blocks of the EEND. Performance evaluation and ablation study reveal that the auxiliary loss in the proposed RX-EEND provides relative reductions in the diarization error rate (DER) by 50.3% and 21.0% on the simulated and CALLHOME (CH) datasets, respectively, compared with self-attentive EEND (SA-EEND). Furthermore, the residual connection used in RX-EEND further relatively reduces the DER by 8.1% for CH dataset.
Abstract:This report proposes a polyphonic sound event detection (SED) method for the DCASE 2021 Challenge Task 4. The proposed SED model consists of two stages: a mean-teacher model for providing target labels regarding weakly labeled or unlabeled data and a self-training-based noisy student model for predicting strong labels for sound events. The mean-teacher model, which is based on the residual convolutional recurrent neural network (RCRNN) for the teacher and student model, is first trained using all the training data from a weakly labeled dataset, an unlabeled dataset, and a strongly labeled synthetic dataset. Then, the trained mean-teacher model predicts the strong label to each of the weakly labeled and unlabeled datasets, which is brought to the noisy student model in the second stage of the proposed SED model. Here, the structure of the noisy student model is identical to the RCRNN-based student model of the mean-teacher model in the first stage. Then, it is self-trained by adding feature noises, such as time-frequency shift, mixup, SpecAugment, and dropout-based model noise. In addition, a semi-supervised loss function is applied to train the noisy student model, which acts as label noise injection. The performance of the proposed SED model is evaluated on the validation set of the DCASE 2021 Challenge Task 4, and then, several ensemble models that combine five-fold validation models with different hyperparameters of the semi-supervised loss function are finally selected as our final models.