Abstract:We present a prompt-engineering-based text-augmentation approach applied to a language-queried audio source separation (LASS) task. To enhance the performance of LASS, the proposed approach utilizes large language models (LLMs) to generate multiple captions corresponding to each sentence of the training dataset. To this end, we first perform experiments to identify the most effective prompts for caption augmentation with a smaller number of captions. A LASS model trained with these augmented captions demonstrates improved performance on the DCASE 2024 Task 9 validation set compared to that trained without augmentation. This study highlights the effectiveness of LLM-based caption augmentation in advancing language-queried audio source separation.
Abstract:This report describes the submission system by the GIST-AiTeR team for the VoxCeleb Speaker Recognition Challenge 2023 (VoxSRC-23) Track 4. Our submission system focuses on implementing diverse speaker diarization (SD) techniques, including ResNet293 and MFA-Conformer with different combinations of segment and hop length. Then, those models are combined into an ensemble model. The ResNet293 and MFA-Conformer models exhibited the diarization error rates (DERs) of 3.65% and 3.83% on VAL46, respectively. The submitted ensemble model provided a DER of 3.50% on VAL46, and consequently, it achieved a DER of 4.88% on the VoxSRC-23 test set.