Abstract:Graph similarity learning, crucial for tasks such as graph classification and similarity search, focuses on measuring the similarity between two graph-structured entities. The core challenge in this field is effectively managing the interactions between graphs. Traditional methods often entail separate, redundant computations for each graph pair, leading to unnecessary complexity. This paper revolutionizes the approach by introducing a parallel graph interaction method called graph fusion. By merging the node sequences of graph pairs into a single large graph, our method leverages a global attention mechanism to facilitate interaction computations and to harvest cross-graph insights. We further assess the similarity between graph pairs at two distinct levels-graph-level and node-level-introducing two innovative, yet straightforward, similarity computation algorithms. Extensive testing across five public datasets shows that our model not only outperforms leading baseline models in graph-to-graph classification and regression tasks but also sets a new benchmark for performance and efficiency. The code for this paper is open-source and available at https://github.com/LLiRarry/GFM-code.git
Abstract:When designing circuits, engineers obtain the information of electronic devices by browsing a large number of documents, which is low efficiency and heavy workload. The use of artificial intelligence technology to automatically parse documents can greatly improve the efficiency of engineers. However, the current document layout analysis model is aimed at various types of documents and is not suitable for electronic device documents. This paper proposes to use EDocNet to realize the document layout analysis function for document analysis, and use the electronic device document data set created by myself for training. The training method adopts the focus and global knowledge distillation method, and a model suitable for electronic device documents is obtained, which can divide the contents of electronic device documents into 21 categories. It has better average accuracy and average recall rate. It also greatly improves the speed of model checking.
Abstract:Extracting parameters from technical documentation is crucial for ensuring design precision and simulation reliability in electronic design. However, current methods struggle to handle high-dimensional design data and meet the demands of real-time processing. In electronic design automation (EDA), engineers often manually search through extensive documents to retrieve component parameters required for constructing PySpice models, a process that is both labor-intensive and time-consuming. To address this challenge, we propose an innovative framework that leverages large language models (LLMs) to automate the extraction of parameters and the generation of PySpice models directly from datasheets. Our framework introduces three Chain-of-Thought (CoT) based techniques: (1) Targeted Document Retrieval (TDR), which enables the rapid identification of relevant technical sections; (2) Iterative Retrieval Optimization (IRO), which refines the parameter search through iterative improvements; and (3) Preference Optimization (PO), which dynamically prioritizes key document sections based on relevance. Experimental results show that applying all three methods together improves retrieval precision by 47.69% and reduces processing latency by 37.84%. Furthermore, effect size analysis using Cohen's d reveals that PO significantly reduces latency, while IRO contributes most to precision enhancement. These findings underscore the potential of our framework to streamline EDA processes, enhance design accuracy, and shorten development timelines. Additionally, our algorithm has model-agnostic generalization, meaning it can improve parameter search performance across different LLMs.
Abstract:Annotation burden has become one of the biggest barriers to semantic segmentation. Approaches based on click-level annotations have therefore attracted increasing attention due to their superior trade-off between supervision and annotation cost. In this paper, we propose seminar learning, a new learning paradigm for semantic segmentation with click-level supervision. The fundamental rationale of seminar learning is to leverage the knowledge from different networks to compensate for insufficient information provided in click-level annotations. Mimicking a seminar, our seminar learning involves a teacher-student and a student-student module, where a student can learn from both skillful teachers and other students. The teacher-student module uses a teacher network based on the exponential moving average to guide the training of the student network. In the student-student module, heterogeneous pseudo-labels are proposed to bridge the transfer of knowledge among students to enhance each other's performance. Experimental results demonstrate the effectiveness of seminar learning, which achieves the new state-of-the-art performance of 72.51% (mIOU), surpassing previous methods by a large margin of up to 16.88% on the Pascal VOC 2012 dataset.