Keio University
Abstract:In this paper, we attempt to summarize monthly reports as investment reports. Fund managers have a wide range of tasks, one of which is the preparation of investment reports. In addition to preparing monthly reports on fund management, fund managers prepare management reports that summarize these monthly reports every six months or once a year. The preparation of fund reports is a labor-intensive and time-consuming task. Therefore, in this paper, we tackle investment summarization from monthly reports using transformer-based models. There are two main types of summarization methods: extractive summarization and abstractive summarization, and this study constructs both methods and examines which is more useful in summarizing investment reports.
Abstract:A wide variety of machine learning algorithms such as support vector machine (SVM), minimax probability machine (MPM), and Fisher discriminant analysis (FDA), exist for binary classification. The purpose of this paper is to provide a unified classification model that includes the above models through a robust optimization approach. This unified model has several benefits. One is that the extensions and improvements intended for SVM become applicable to MPM and FDA, and vice versa. Another benefit is to provide theoretical results to above learning methods at once by dealing with the unified model. We give a statistical interpretation of the unified classification model and propose a non-convex optimization algorithm that can be applied to non-convex variants of existing learning methods.