Abstract:The surprisingly popular algorithm (SPA) is a powerful crowd decision model proposed in social science, which can identify the knowledge possessed in of the minority. We have modelled the SPA to select the exemplars in PSO scenarios and proposed the Surprisingly Popular Algorithm-based Comprehensive Adaptive Topology Learning Particle Swarm Optimization. Due to the significant influence of the communication topology on exemplar selection, we propose an adaptive euclidean distance dynamic topology maintenance. And then we propose the Surprisingly Popular Algorithm-based Adaptive Euclidean Distance Topology Learning Particle Swarm Optimization (SpadePSO), which use SPA to guide the direction of the exploitation sub-population. We analyze the influence of different topologies on the SPA. We evaluate the proposed SpadePSO on the full CEC2014 benchmark suite, the spread spectrum radar polyphase coding design and the ordinary differential equations models inference. The experimental results on the full CEC2014 benchmark suite show that the SpadePSO is competitive with PSO, OLPSO, HCLPSO, GL-PSO, TSLPSO and XPSO. The mean and standard deviation of SpadePSO are lower than the other PSO variants on the spread spectrum radar polyphase coding design. Finally, the ordinary differential equations models' inference results show that SpadePSO performs better than LatinPSO, specially designed for this problem. SpadePSO has lower requirements for population number than LatinPSO.
Abstract:The continuous surge of environmental noise levels has become a vital challenge for humanity. Earlier studies have reported that prolonged exposure to loud noise may cause auditory and non-auditory disorders. Therefore, there is a growing demand for suitable noise barriers. Herein, we have investigated several commercially available curtain fabrics' acoustic performance, potentially used for sound insulation purposes. Thorough experimental investigations have been performed on PVC coated polyester fabrics' acoustical performances and 100 % pure PVC sheets. The PVC-coated polyester fabric exhibited better sound insulation properties, particularly in the mid-to-high frequency range (600-1600 Hz) with a transmission loss of about 11 to 22 dB, while insertion loss of > 10 dB has been achieved. Also, the acoustic performance of multi-layer curtains has been investigated. These multi-layer curtains have shown superior acoustic properties to that of single-layer acoustic curtains.