Abstract:We describe an open-source simulator that creates sensor irradiance and sensor images of typical automotive scenes in urban settings. The purpose of the system is to support camera design and testing for automotive applications. The user can specify scene parameters (e.g., scene type, road type, traffic density, time of day) to assemble a large number of random scenes from graphics assets stored in a database. The sensor irradiance is generated using quantitative computer graphics methods, and the sensor images are created using image systems sensor simulation. The synthetic sensor images have pixel level annotations; hence, they can be used to train and evaluate neural networks for imaging tasks, such as object detection and classification. The end-to-end simulation system supports quantitative assessment, from scene to camera to network accuracy, for automotive applications.
Abstract:There is widespread interest in estimating the fluorescence properties of natural materials in an image. However, the separation between reflected and fluoresced components is difficult, because it is impossible to distinguish reflected and fluoresced photons without controlling the illuminant spectrum. We show how to jointly estimate the reflectance and fluorescence from a single set of images acquired under multiple illuminants. We present a framework based on a linear approximation to the physical equations describing image formation in terms of surface spectral reflectance and fluorescence due to multiple fluorophores. We relax the non-convex, inverse estimation problem in order to jointly estimate the reflectance and fluorescence properties in a single optimization step and we use the Alternating Direction Method of Multipliers (ADMM) approach to efficiently find a solution. We provide a software implementation of the solver for our method and prior methods. We evaluate the accuracy and reliability of the method using both simulations and experimental data. To acquire data to test the methods, we built a custom imaging system using a monochrome camera, a filter wheel with bandpass transmissive filters and a small number of light emitting diodes. We compared the system and algorithm performance with the ground truth as well as with prior methods. Our approach produces lower errors compared to earlier algorithms.