Abstract:Complicated first principles modelling and controller synthesis can be prohibitively slow and expensive for high-mix, low-volume products such as hydraulic excavators. Instead, in a data-driven approach, recorded trajectories from the real system can be used to train local model networks (LMNs), for which feedforward controllers are derived via feedback linearization. However, previous works required LMNs without zero dynamics for feedback linearization, which restricts the model structure and thus modelling capacity of LMNs. In this paper, we overcome this restriction by providing a criterion for when feedback linearization of LMNs with zero dynamics yields a valid controller. As a criterion we propose the bounded-input bounded-output stability of the resulting controller. In two additional contributions, we extend this approach to consider measured disturbance signals and multiple inputs and outputs. We illustrate the effectiveness of our contributions in a hydraulic excavator control application with hardware experiments. To this end, we train LMNs from recorded, noisy data and derive feedforward controllers used as part of a leveling assistance system on the excavator. In our experiments, incorporating disturbance signals and multiple inputs and outputs enhances tracking performance of the learned controller. A video of our experiments is available at https://youtu.be/lrrWBx2ASaE.
Abstract:Model Predictive Control (MPC) is a method to control nonlinear systems with guaranteed stability and constraint satisfaction but suffers from high computation times. Approximate MPC (AMPC) with neural networks (NNs) has emerged to address this limitation, enabling deployment on resource-constrained embedded systems. However, when tuning AMPCs for real-world systems, large datasets need to be regenerated and the NN needs to be retrained at every tuning step. This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining. By incorporating local sensitivities of nonlinear programs, the proposed method not only mimics optimal MPC inputs but also adjusts to changes in physical parameters of the model using linear predictions while still guaranteeing stability. We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU). We use the same NN across both system instances that have different parameters. This work not only represents the first experimental demonstration of AMPC for fast-moving systems on low-cost MCUs to the best of our knowledge, but also showcases generalization across system instances and variations through our parameter-adaptation method. Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
Abstract:Model predictive control (MPC) achieves stability and constraint satisfaction for general nonlinear systems, but requires computationally expensive online optimization. This paper studies approximations of such MPC controllers via neural networks (NNs) to achieve fast online evaluation. We propose safety augmentation that yields deterministic guarantees for convergence and constraint satisfaction despite approximation inaccuracies. We approximate the entire input sequence of the MPC with NNs, which allows us to verify online if it is a feasible solution to the MPC problem. We replace the NN solution by a safe candidate based on standard MPC techniques whenever it is infeasible or has worse cost. Our method requires a single evaluation of the NN and forward integration of the input sequence online, which is fast to compute on resource-constrained systems. The proposed control framework is illustrated on three non-linear MPC benchmarks of different complexity, demonstrating computational speedups orders of magnitudes higher than online optimization. In the examples, we achieve deterministic safety through the safety-augmented NNs, where naive NN implementation fails.