Abstract:Social engineering scams increasingly employ personalized, multi-turn deception, exposing the limits of traditional detection methods. While Large Language Models (LLMs) show promise in identifying deception, their cognitive assistance potential remains underexplored. We propose ScriptMind, an integrated framework for LLM-based scam detection that bridges automated reasoning and human cognition. It comprises three components: the Crime Script Inference Task (CSIT) for scam reasoning, the Crime Script-Aware Inference Dataset (CSID) for fine-tuning small LLMs, and the Cognitive Simulation-based Evaluation of Social Engineering Defense (CSED) for assessing real-time cognitive impact. Using 571 Korean phone scam cases, we built 22,712 structured scammer-sequence training instances. Experimental results show that the 11B small LLM fine-tuned with ScriptMind outperformed GPT-4o by 13%, achieving superior performance over commercial models in detection accuracy, false-positive reduction, scammer utterance prediction, and rationale quality. Moreover, in phone scam simulation experiments, it significantly enhanced and sustained users' suspicion levels, improving their cognitive awareness of scams. ScriptMind represents a step toward human-centered, cognitively adaptive LLMs for scam defense.
Abstract:The use of Large Language Models (LLMs) in police operations is growing, yet an evaluation framework tailored to police operations remains absent. While LLM's responses may not always be legally incorrect, their unverified use still can lead to severe issues such as unlawful arrests and improper evidence collection. To address this, we propose PAS (Police Action Scenarios), a systematic framework covering the entire evaluation process. Applying this framework, we constructed a novel QA dataset from over 8,000 official documents and established key metrics validated through statistical analysis with police expert judgements. Experimental results show that commercial LLMs struggle with our new police-related tasks, particularly in providing fact-based recommendations. This study highlights the necessity of an expandable evaluation framework to ensure reliable AI-driven police operations. We release our data and prompt template.
Abstract:Crime situations are race against time. An AI-assisted criminal investigation system, providing prompt but precise legal counsel is in need for police officers. We introduce LAPIS (Language Model Augmented Police Investigation System), an automated system that assists police officers to perform rational and legal investigative actions. We constructed a finetuning dataset and retrieval knowledgebase specialized in crime investigation legal reasoning task. We extended the dataset's quality by incorporating manual curation efforts done by a group of domain experts. We then finetuned the pretrained weights of a smaller Korean language model to the newly constructed dataset and integrated it with the crime investigation knowledgebase retrieval approach. Experimental results show LAPIS' potential in providing reliable legal guidance for police officers, even better than the proprietary GPT-4 model. Qualitative analysis on the rationales generated by LAPIS demonstrate the model's reasoning ability to leverage the premises and derive legally correct conclusions.