Abstract:Data across modalities such as images, text, and graphs often contains hierarchical and relational structures, which are challenging to model within Euclidean geometry. Hyperbolic geometry provides a natural framework for representing such structures. Building on this property, this work introduces HexFormer, a hyperbolic vision transformer for image classification that incorporates exponential map aggregation within its attention mechanism. Two designs are explored: a hyperbolic ViT (HexFormer) and a hybrid variant (HexFormer-Hybrid) that combines a hyperbolic encoder with an Euclidean linear classification head. HexFormer incorporates a novel attention mechanism based on exponential map aggregation, which yields more accurate and stable aggregated representations than standard centroid based averaging, showing that simpler approaches retain competitive merit. Experiments across multiple datasets demonstrate consistent performance improvements over Euclidean baselines and prior hyperbolic ViTs, with the hybrid variant achieving the strongest overall results. Additionally, this study provides an analysis of gradient stability in hyperbolic transformers. The results reveal that hyperbolic models exhibit more stable gradients and reduced sensitivity to warmup strategies compared to Euclidean architectures, highlighting their robustness and efficiency in training. Overall, these findings indicate that hyperbolic geometry can enhance vision transformer architectures by improving gradient stability and accuracy. In addition, relatively simple mechanisms such as exponential map aggregation can provide strong practical benefits.
Abstract:Recently, Large Language Models (LLMs) have become very widespread and are used to solve a wide variety of tasks. To successfully handle these tasks, LLMs require longer training times and larger model sizes. This makes LLMs ideal candidates for pruning methods that reduce computational demands while maintaining performance. Previous methods require a retraining phase after pruning to maintain the original model's performance. However, state-of-the-art pruning methods, such as Wanda, prune the model without retraining, making the pruning process faster and more efficient. Building upon Wanda's work, this study provides a theoretical explanation of why the method is effective and leverages these insights to enhance the pruning process. Specifically, a theoretical analysis of the pruning problem reveals a common scenario in Machine Learning where Wanda is the optimal pruning method. Furthermore, this analysis is extended to cases where Wanda is no longer optimal, leading to the development of a new method, STADE, based on the standard deviation of the input. From a theoretical standpoint, STADE demonstrates better generality across different scenarios. Finally, extensive experiments on Llama and Open Pre-trained Transformers (OPT) models validate these theoretical findings, showing that depending on the training conditions, Wanda's optimal performance varies as predicted by the theoretical framework. These insights contribute to a more robust understanding of pruning strategies and their practical implications. Code is available at: https://github.com/Coello-dev/STADE/