Abstract:The combination of LLM agents with external tools enables models to solve complex tasks beyond their knowledge base. Human-designed tools are inflexible and restricted to solutions within the scope of pre-existing tools created by experts. To address this problem, we propose ATLASS, an advanced tool learning and selection system designed as a closed-loop framework. It enables the LLM to solve problems by dynamically generating external tools on demand. In this framework, agents play a crucial role in orchestrating tool selection, execution, and refinement, ensuring adaptive problem-solving capabilities. The operation of ATLASS follows three phases: The first phase, Understanding Tool Requirements, involves the Agents determining whether tools are required and specifying their functionality; the second phase, Tool Retrieval/Generation, involves the Agents retrieving or generating tools based on their availability; and the third phase, Task Solving, involves combining all the component tools necessary to complete the initial task. The Tool Dataset stores the generated tools, ensuring reusability and minimizing inference cost. Current LLM-based tool generation systems have difficulty creating complex tools that need APIs or external packages. In ATLASS, we solve the problem by automatically setting up the environment, fetching relevant API documentation online, and using a Python interpreter to create a reliable, versatile tool that works in a wider range of situations. OpenAI GPT-4.0 is used as the LLM agent, and safety and ethical concerns are handled through human feedback before executing generated code. By addressing the limitations of predefined toolsets and enhancing adaptability, ATLASS serves as a real-world solution that empowers users with dynamically generated tools for complex problem-solving.
Abstract:Voice based applications are ruling over the era of automation because speech has a lot of factors that determine a speakers information as well as speech. Modern Automatic Speech Recognition (ASR) is a blessing in the field of Human-Computer Interaction (HCI) for efficient communication among humans and devices using Artificial Intelligence technology. Speech is one of the easiest mediums of communication because it has a lot of identical features for different speakers. Nowadays it is possible to determine speakers and their identity using their speech in terms of speaker recognition. In this paper, we presented a method that will provide a speakers geographical identity in a certain region using continuous Bengali speech. We consider eight different divisions of Bangladesh as the geographical region. We applied the Mel Frequency Cepstral Coefficient (MFCC) and Delta features on an Artificial Neural Network to classify speakers division. We performed some preprocessing tasks like noise reduction and 8-10 second segmentation of raw audio before feature extraction. We used our dataset of more than 45 hours of audio data from 633 individual male and female speakers. We recorded the highest accuracy of 85.44%.
Abstract:This research paper presents a unique Bengali OCR system with some capabilities. The system excels in reconstructing document layouts while preserving structure, alignment, and images. It incorporates advanced image and signature detection for accurate extraction. Specialized models for word segmentation cater to diverse document types, including computer-composed, letterpress, typewriter, and handwritten documents. The system handles static and dynamic handwritten inputs, recognizing various writing styles. Furthermore, it has the ability to recognize compound characters in Bengali. Extensive data collection efforts provide a diverse corpus, while advanced technical components optimize character and word recognition. Additional contributions include image, logo, signature and table recognition, perspective correction, layout reconstruction, and a queuing module for efficient and scalable processing. The system demonstrates outstanding performance in efficient and accurate text extraction and analysis.