Abstract:Modern Machine Learning models are expensive IP and business competitiveness often depends on keeping this IP confidential. This in turn restricts how these models are deployed -- for example it is unclear how to deploy a model on-device without inevitably leaking the underlying model. At the same time, confidential computing technologies such as Multi-Party Computation or Homomorphic encryption remain impractical for wide adoption. In this paper we take a different approach and investigate feasibility of ML-specific mechanisms that deter unauthorized model use by restricting the model to only be usable on specific hardware, making adoption on unauthorized hardware inconvenient. That way, even if IP is compromised, it cannot be trivially used without specialised hardware or major model adjustment. In a sense, we seek to enable cheap locking of machine learning models into specific hardware. We demonstrate that locking mechanisms are feasible by either targeting efficiency of model representations, such making models incompatible with quantisation, or tie the model's operation on specific characteristics of hardware, such as number of cycles for arithmetic operations. We demonstrate that locking comes with negligible work and latency overheads, while significantly restricting usability of the resultant model on unauthorized hardware.
Abstract:While previous research backdoored neural networks by changing their parameters, recent work uncovered a more insidious threat: backdoors embedded within the definition of the network's architecture. This involves injecting common architectural components, such as activation functions and pooling layers, to subtly introduce a backdoor behavior that persists even after (full re-)training. However, the full scope and implications of architectural backdoors have remained largely unexplored. Bober-Irizar et al. [2023] introduced the first architectural backdoor; they showed how to create a backdoor for a checkerboard pattern, but never explained how to target an arbitrary trigger pattern of choice. In this work we construct an arbitrary trigger detector which can be used to backdoor an architecture with no human supervision. This leads us to revisit the concept of architecture backdoors and taxonomise them, describing 12 distinct types. To gauge the difficulty of detecting such backdoors, we conducted a user study, revealing that ML developers can only identify suspicious components in common model definitions as backdoors in 37% of cases, while they surprisingly preferred backdoored models in 33% of cases. To contextualize these results, we find that language models outperform humans at the detection of backdoors. Finally, we discuss defenses against architectural backdoors, emphasizing the need for robust and comprehensive strategies to safeguard the integrity of ML systems.