Abstract:The Rashomon Effect, coined by Leo Breiman, describes the phenomenon that there exist many equally good predictive models for the same dataset. This phenomenon happens for many real datasets and when it does, it sparks both magic and consternation, but mostly magic. In light of the Rashomon Effect, this perspective piece proposes reshaping the way we think about machine learning, particularly for tabular data problems in the nondeterministic (noisy) setting. We address how the Rashomon Effect impacts (1) the existence of simple-yet-accurate models, (2) flexibility to address user preferences, such as fairness and monotonicity, without losing performance, (3) uncertainty in predictions, fairness, and explanations, (4) reliable variable importance, (5) algorithm choice, specifically, providing advanced knowledge of which algorithms might be suitable for a given problem, and (6) public policy. We also discuss a theory of when the Rashomon Effect occurs and why. Our goal is to illustrate how the Rashomon Effect can have a massive impact on the use of machine learning for complex problems in society.
Abstract:The Rashomon set is the set of models that perform approximately equally well on a given dataset, and the Rashomon ratio is the fraction of all models in a given hypothesis space that are in the Rashomon set. Rashomon ratios are often large for tabular datasets in criminal justice, healthcare, lending, education, and in other areas, which has practical implications about whether simpler models can attain the same level of accuracy as more complex models. An open question is why Rashomon ratios often tend to be large. In this work, we propose and study a mechanism of the data generation process, coupled with choices usually made by the analyst during the learning process, that determines the size of the Rashomon ratio. Specifically, we demonstrate that noisier datasets lead to larger Rashomon ratios through the way that practitioners train models. Additionally, we introduce a measure called pattern diversity, which captures the average difference in predictions between distinct classification patterns in the Rashomon set, and motivate why it tends to increase with label noise. Our results explain a key aspect of why simpler models often tend to perform as well as black box models on complex, noisier datasets.