Abstract:Analog circuits are crucial in modern electronic systems, and automating their design has attracted significant research interest. One of major challenges is topology synthesis, which determines circuit components and their connections. Recent studies explore large language models (LLM) for topology synthesis. However, the scenarios addressed by these studies do not align well with practical applications. Specifically, existing work uses vague design requirements as input and outputs an ideal model, but detailed structural requirements and device-level models are more practical. Moreover, current approaches either formulate topology synthesis as graph generation or Python code generation, whereas practical topology design is a complex process that demands extensive design knowledge. In this work, we propose AnalogXpert, a LLM-based agent aiming at solving practical topology synthesis problem by incorporating circuit design expertise into LLMs. First, we represent analog topology as SPICE code and introduce a subcircuit library to reduce the design space, in the same manner as experienced designers. Second, we decompose the problem into two sub-task (i.e., block selection and block connection) through the use of CoT and incontext learning techniques, to mimic the practical design process. Third, we introduce a proofreading strategy that allows LLMs to incrementally correct the errors in the initial design, akin to human designers who iteratively check and adjust the initial topology design to ensure accuracy. Finally, we construct a high-quality benchmark containing both real data (30) and synthetic data (2k). AnalogXpert achieves 40% and 23% success rates on the synthetic dataset and real dataset respectively, which is markedly better than those of GPT-4o (3% on both the synthetic dataset and the real dataset).
Abstract:Sequential recommendation (SR) tasks enhance recommendation accuracy by capturing the connection between users' past interactions and their changing preferences. Conventional models often focus solely on capturing sequential patterns within the training data, neglecting the broader context and semantic information embedded in item titles from external sources. This limits their predictive power and adaptability. Recently, large language models (LLMs) have shown promise in SR tasks due to their advanced understanding capabilities and strong generalization abilities. Researchers have attempted to enhance LLMs' recommendation performance by incorporating information from SR models. However, previous approaches have encountered problems such as 1) only influencing LLMs at the result level; 2) increased complexity of LLMs recommendation methods leading to reduced interpretability; 3) incomplete understanding and utilization of SR models information by LLMs. To address these problems, we proposes a novel framework, DELRec, which aims to extract knowledge from SR models and enable LLMs to easily comprehend and utilize this supplementary information for more effective sequential recommendations. DELRec consists of two main stages: 1) SR Models Pattern Distilling, focusing on extracting behavioral patterns exhibited by SR models using soft prompts through two well-designed strategies; 2) LLMs-based Sequential Recommendation, aiming to fine-tune LLMs to effectively use the distilled auxiliary information to perform SR tasks. Extensive experimental results conducted on three real datasets validate the effectiveness of the DELRec framework.
Abstract:Analog Computing-in-Memory (ACIM) is an emerging architecture to perform efficient AI edge computing. However, current ACIM designs usually have unscalable topology and still heavily rely on manual efforts. These drawbacks limit the ACIM application scenarios and lead to an undesired time-to-market. This work proposes an end-to-end automated ACIM based on a synthesizable architecture (EasyACIM). With a given array size and customized cell library, EasyACIM can generate layouts for ACIMs with various design specifications end-to-end automatically. Leveraging the multi-objective genetic algorithm (MOGA)-based design space explorer, EasyACIM can obtain high-quality ACIM solutions based on the proposed synthesizable architecture, targeting versatile application scenarios. The ACIM solutions given by EasyACIM have a wide design space and competitive performance compared to the state-of-the-art (SOTA) ACIMs.