Abstract:The variability and biases in the real-world performance benchmarking of deep learning models for medical imaging compromise their trustworthiness for real-world deployment. The common approach of holding out a single fixed test set fails to quantify the variance in the estimation of test performance metrics. This study introduces NACHOS (Nested and Automated Cross-validation and Hyperparameter Optimization using Supercomputing) to reduce and quantify the variance of test performance metrics of deep learning models. NACHOS integrates Nested Cross-Validation (NCV) and Automated Hyperparameter Optimization (AHPO) within a parallelized high-performance computing (HPC) framework. NACHOS was demonstrated on a chest X-ray repository and an Optical Coherence Tomography (OCT) dataset under multiple data partitioning schemes. Beyond performance estimation, DACHOS (Deployment with Automated Cross-validation and Hyperparameter Optimization using Supercomputing) is introduced to leverage AHPO and cross-validation to build the final model on the full dataset, improving expected deployment performance. The findings underscore the importance of NCV in quantifying and reducing estimation variance, AHPO in optimizing hyperparameters consistently across test folds, and HPC in ensuring computational feasibility. By integrating these methodologies, NACHOS and DACHOS provide a scalable, reproducible, and trustworthy framework for DL model evaluation and deployment in medical imaging.
Abstract:Effective image classification hinges on discerning relevant features from both foreground and background elements, with the foreground typically holding the critical information. While humans adeptly classify images with limited exposure, artificial neural networks often struggle with feature selection from rare samples. To address this challenge, we propose a novel method for selecting class-relevant patch embeddings. Our approach involves splitting support and query images into patches, encoding them using a pre-trained Vision Transformer (ViT) to obtain class embeddings and patch embeddings, respectively. Subsequently, we filter patch embeddings using class embeddings to retain only the class-relevant ones. For each image, we calculate the similarity between class embedding and each patch embedding, sort the similarity sequence in descending order, and only retain top-ranked patch embeddings. By prioritizing similarity between the class embedding and patch embeddings, we select top-ranked patch embeddings to be fused with class embedding to form a comprehensive image representation, enhancing pattern recognition across instances. Our strategy effectively mitigates the impact of class-irrelevant patch embeddings, yielding improved performance in pre-trained models. Extensive experiments on popular few-shot classification benchmarks demonstrate the simplicity, efficacy, and computational efficiency of our approach, outperforming state-of-the-art baselines under both 5-shot and 1-shot scenarios.