Abstract:Recent advancements in personalized Text-to-Video (T2V) generation highlight the importance of integrating character-specific identities and actions. However, previous T2V models struggle with identity consistency and controllable motion dynamics, mainly due to limited fine-grained facial and action-based textual prompts, and datasets that overlook key human attributes and actions. To address these challenges, we propose MotionCharacter, an efficient and high-fidelity human video generation framework designed for identity preservation and fine-grained motion control. We introduce an ID-preserving module to maintain identity fidelity while allowing flexible attribute modifications, and further integrate ID-consistency and region-aware loss mechanisms, significantly enhancing identity consistency and detail fidelity. Additionally, our approach incorporates a motion control module that prioritizes action-related text while maintaining subject consistency, along with a dataset, Human-Motion, which utilizes large language models to generate detailed motion descriptions. For simplify user control during inference, we parameterize motion intensity through a single coefficient, allowing for easy adjustments. Extensive experiments highlight the effectiveness of MotionCharacter, demonstrating significant improvements in ID-preserving, high-quality video generation.
Abstract:In recent years, saliency ranking has emerged as a challenging task focusing on assessing the degree of saliency at instance-level. Being subjective, even humans struggle to identify the precise order of all salient instances. Previous approaches undertake the saliency ranking by directly sorting the rank scores of salient instances, which have not explicitly resolved the inherent ambiguities. To overcome this limitation, we propose the ranking by partition paradigm, which segments unordered salient instances into partitions and then ranks them based on the correlations among these partitions. The ranking by partition paradigm alleviates ranking ambiguities in a general sense, as it consistently improves the performance of other saliency ranking models. Additionally, we introduce the Dense Pyramid Transformer (DPT) to enable global cross-scale interactions, which significantly enhances feature interactions with reduced computational burden. Extensive experiments demonstrate that our approach outperforms all existing methods. The code for our method is available at \url{https://github.com/ssecv/PSR}.