Abstract:We introduce LLaVA-MoD, a novel framework designed to enable the efficient training of small-scale Multimodal Language Models (s-MLLM) by distilling knowledge from large-scale MLLM (l-MLLM). Our approach tackles two fundamental challenges in MLLM distillation. First, we optimize the network structure of s-MLLM by integrating a sparse Mixture of Experts (MoE) architecture into the language model, striking a balance between computational efficiency and model expressiveness. Second, we propose a progressive knowledge transfer strategy to ensure comprehensive knowledge migration. This strategy begins with mimic distillation, where we minimize the Kullback-Leibler (KL) divergence between output distributions to enable the student model to emulate the teacher network's understanding. Following this, we introduce preference distillation via Direct Preference Optimization (DPO), where the key lies in treating l-MLLM as the reference model. During this phase, the s-MLLM's ability to discriminate between superior and inferior examples is significantly enhanced beyond l-MLLM, leading to a better student that surpasses its teacher, particularly in hallucination benchmarks. Extensive experiments demonstrate that LLaVA-MoD outperforms existing models across various multimodal benchmarks while maintaining a minimal number of activated parameters and low computational costs. Remarkably, LLaVA-MoD, with only 2B activated parameters, surpasses Qwen-VL-Chat-7B by an average of 8.8% across benchmarks, using merely 0.3% of the training data and 23% trainable parameters. These results underscore LLaVA-MoD's ability to effectively distill comprehensive knowledge from its teacher model, paving the way for the development of more efficient MLLMs. The code will be available on: https://github.com/shufangxun/LLaVA-MoD.
Abstract:Machine learning models, in particular deep neural networks, are currently an integral part of various applications, from healthcare to finance. However, using sensitive data to train these models raises concerns about privacy and security. One method that has emerged to verify if the trained models are privacy-preserving is Membership Inference Attacks (MIA), which allows adversaries to determine whether a specific data point was part of a model's training dataset. While a series of MIAs have been proposed in the literature, only a few can achieve high True Positive Rates (TPR) in the low False Positive Rate (FPR) region (0.01%~1%). This is a crucial factor to consider for an MIA to be practically useful in real-world settings. In this paper, we present a novel approach to MIA that is aimed at significantly improving TPR at low FPRs. Our method, named learning-based difficulty calibration for MIA(LDC-MIA), characterizes data records by their hardness levels using a neural network classifier to determine membership. The experiment results show that LDC-MIA can improve TPR at low FPR by up to 4x compared to the other difficulty calibration based MIAs. It also has the highest Area Under ROC curve (AUC) across all datasets. Our method's cost is comparable with most of the existing MIAs, but is orders of magnitude more efficient than one of the state-of-the-art methods, LiRA, while achieving similar performance.
Abstract:As people's daily life becomes increasingly inseparable from various mobile electronic devices, relevant service application platforms and network operators can collect numerous individual information easily. When releasing these data for scientific research or commercial purposes, users' privacy will be in danger, especially in the publication of spatiotemporal trajectory datasets. Therefore, to avoid the leakage of users' privacy, it is necessary to anonymize the data before they are released. However, more than simply removing the unique identifiers of individuals is needed to protect the trajectory privacy, because some attackers may infer the identity of users by the connection with other databases. Much work has been devoted to merging multiple trajectories to avoid re-identification, but these solutions always require sacrificing data quality to achieve the anonymity requirement. In order to provide sufficient privacy protection for users' trajectory datasets, this paper develops a study on trajectory privacy against re-identification attacks, proposing a trajectory K-anonymity model based on Point Density and Partition (KPDP). Our approach improves the existing trajectory generalization anonymization techniques regarding trajectory set partition preprocessing and trajectory clustering algorithms. It successfully resists re-identification attacks and reduces the data utility loss of the k-anonymized dataset. A series of experiments on a real-world dataset show that the proposed model has significant advantages in terms of higher data utility and shorter algorithm execution time than other existing techniques.