Abstract:Quantization-aware training (QAT) is a common paradigm for network quantization, in which the training phase incorporates the simulation of the low-precision computation to optimize the quantization parameters in alignment with the task goals. However, direct training of low-precision networks generally faces two obstacles: 1. The low-precision model exhibits limited representation capabilities and cannot directly replicate full-precision calculations, which constitutes a deficiency compared to full-precision alternatives; 2. Non-ideal deviations during gradient propagation are a common consequence of employing pseudo-gradients as approximations in derived quantized functions. In this paper, we propose a general QAT framework for alleviating the aforementioned concerns by permitting the forward and backward processes of the low-precision network to be guided by the full-precision partner during training. In conjunction with the direct training of the quantization model, intermediate mixed-precision models are generated through the block-by-block replacement on the full-precision model and working simultaneously with the low-precision backbone, which enables the integration of quantized low-precision blocks into full-precision networks throughout the training phase. Consequently, each quantized block is capable of: 1. simulating full-precision representation during forward passes; 2. obtaining gradients with improved estimation during backward passes. We demonstrate that the proposed method achieves state-of-the-art results for 4-, 3-, and 2-bit quantization on ImageNet and CIFAR-10. The proposed framework provides a compatible extension for most QAT methods and only requires a concise wrapper for existing codes.
Abstract:Spiking neural networks (SNNs) have low power consumption and bio-interpretable characteristics, and are considered to have tremendous potential for energy-efficient computing. However, the exploration of SNNs on image generation tasks remains very limited, and a unified and effective structure for SNN-based generative models has yet to be proposed. In this paper, we explore a novel diffusion model architecture within spiking neural networks. We utilize transformer to replace the commonly used U-net structure in mainstream diffusion models. It can generate higher quality images with relatively lower computational cost and shorter sampling time. It aims to provide an empirical baseline for research of generative models based on SNNs. Experiments on MNIST, Fashion-MNIST, and CIFAR-10 datasets demonstrate that our work is highly competitive compared to existing SNN generative models.
Abstract:Traditional end-to-end (E2E) training of deep networks necessitates storing intermediate activations for back-propagation, resulting in a large memory footprint on GPUs and restricted model parallelization. As an alternative, greedy local learning partitions the network into gradient-isolated modules and trains supervisely based on local preliminary losses, thereby providing asynchronous and parallel training methods that substantially reduce memory cost. However, empirical experiments reveal that as the number of segmentations of the gradient-isolated module increases, the performance of the local learning scheme degrades substantially, severely limiting its expansibility. To avoid this issue, we theoretically analyze the greedy local learning from the standpoint of information theory and propose a ContSup scheme, which incorporates context supply between isolated modules to compensate for information loss. Experiments on benchmark datasets (i.e. CIFAR, SVHN, STL-10) achieve SOTA results and indicate that our proposed method can significantly improve the performance of greedy local learning with minimal memory and computational overhead, allowing for the boost of the number of isolated modules. Our codes are available at https://github.com/Tab-ct/ContSup.