Abstract:Recent advancements in Large Language Models (LLMs) have established them as agentic systems capable of planning and interacting with various tools. These LLM agents are often paired with web-based tools, enabling access to diverse sources and real-time information. Although these advancements offer significant benefits across various applications, they also increase the risk of malicious use, particularly in cyberattacks involving personal information. In this work, we investigate the risks associated with misuse of LLM agents in cyberattacks involving personal data. Specifically, we aim to understand: 1) how potent LLM agents can be when directed to conduct cyberattacks, 2) how cyberattacks are enhanced by web-based tools, and 3) how affordable and easy it becomes to launch cyberattacks using LLM agents. We examine three attack scenarios: the collection of Personally Identifiable Information (PII), the generation of impersonation posts, and the creation of spear-phishing emails. Our experiments reveal the effectiveness of LLM agents in these attacks: LLM agents achieved a precision of up to 95.9% in collecting PII, up to 93.9% of impersonation posts created by LLM agents were evaluated as authentic, and the click rate for links in spear phishing emails created by LLM agents reached up to 46.67%. Additionally, our findings underscore the limitations of existing safeguards in contemporary commercial LLMs, emphasizing the urgent need for more robust security measures to prevent the misuse of LLM agents.
Abstract:Recent advances in natural language processing and the increased use of large language models have exposed new security vulnerabilities, such as backdoor attacks. Previous backdoor attacks require input manipulation after model distribution to activate the backdoor, posing limitations in real-world applicability. Addressing this gap, we introduce a novel Claim-Guided Backdoor Attack (CGBA), which eliminates the need for such manipulations by utilizing inherent textual claims as triggers. CGBA leverages claim extraction, clustering, and targeted training to trick models to misbehave on targeted claims without affecting their performance on clean data. CGBA demonstrates its effectiveness and stealthiness across various datasets and models, significantly enhancing the feasibility of practical backdoor attacks. Our code and data will be available at https://github.com/PaperCGBA/CGBA.