Abstract:Trajectory forecasting has become a popular deep learning task due to its relevance for scenario simulation for autonomous driving. Specifically, trajectory forecasting predicts the trajectory of a short-horizon future for specific human drivers in a particular traffic scenario. Robust and accurate future predictions can enable autonomous driving planners to optimize for low-risk and predictable outcomes for human drivers around them. Although some work has been done to model driving style in planning and personalized autonomous polices, a gap exists in explicitly modeling human driving styles for trajectory forecasting of human behavior. Human driving style is most certainly a correlating factor to decision making, especially in edge-case scenarios where risk is nontrivial, as justified by the large amount of traffic psychology literature on risky driving. So far, the current real-world datasets for trajectory forecasting lack insight on the variety of represented driving styles. While the datasets may represent real-world distributions of driving styles, we posit that fringe driving style types may also be correlated with edge-case safety scenarios. In this work, we conduct analyses on existing real-world trajectory datasets for driving and dissect these works from the lens of driving styles, which is often intangible and non-standardized.
Abstract:While standard Empirical Risk Minimization (ERM) training is proven effective for image classification on in-distribution data, it fails to perform well on out-of-distribution samples. One of the main sources of distribution shift for image classification is the compositional nature of images. Specifically, in addition to the main object or component(s) determining the label, some other image components usually exist, which may lead to the shift of input distribution between train and test environments. More importantly, these components may have spurious correlations with the label. To address this issue, we propose Decompose-and-Compose (DaC), which improves robustness to correlation shift by a compositional approach based on combining elements of images. Based on our observations, models trained with ERM usually highly attend to either the causal components or the components having a high spurious correlation with the label (especially in datapoints on which models have a high confidence). In fact, according to the amount of spurious correlation and the easiness of classification based on the causal or non-causal components, the model usually attends to one of these more (on samples with high confidence). Following this, we first try to identify the causal components of images using class activation maps of models trained with ERM. Afterward, we intervene on images by combining them and retraining the model on the augmented data, including the counterfactual ones. Along with its high interpretability, this work proposes a group-balancing method by intervening on images without requiring group labels or information regarding the spurious features during training. The method has an overall better worst group accuracy compared to previous methods with the same amount of supervision on the group labels in correlation shift.