Abstract:Classifiers trained with Empirical Risk Minimization (ERM) tend to rely on attributes that have high spurious correlation with the target. This can degrade the performance on underrepresented (or 'minority') groups that lack these attributes, posing significant challenges for both out-of-distribution generalization and fairness objectives. Many studies aim to enhance robustness to spurious correlation, but they sometimes depend on group annotations for training. Additionally, a common limitation in previous research is the reliance on group-annotated validation datasets for model selection. This constrains their applicability in situations where the nature of the spurious correlation is not known, or when group labels for certain spurious attributes are not available. To enhance model robustness with minimal group annotation assumptions, we propose Environment-based Validation and Loss-based Sampling (EVaLS). It uses the losses from an ERM-trained model to construct a balanced dataset of high-loss and low-loss samples, mitigating group imbalance in data. This significantly enhances robustness to group shifts when equipped with a simple post-training last layer retraining. By using environment inference methods to create diverse environments with correlation shifts, EVaLS can potentially eliminate the need for group annotation in validation data. In this context, the worst environment accuracy acts as a reliable surrogate throughout the retraining process for tuning hyperparameters and finding a model that performs well across diverse group shifts. EVaLS effectively achieves group robustness, showing that group annotation is not necessary even for validation. It is a fast, straightforward, and effective approach that reaches near-optimal worst group accuracy without needing group annotations, marking a new chapter in the robustness of trained models against spurious correlation.
Abstract:While standard Empirical Risk Minimization (ERM) training is proven effective for image classification on in-distribution data, it fails to perform well on out-of-distribution samples. One of the main sources of distribution shift for image classification is the compositional nature of images. Specifically, in addition to the main object or component(s) determining the label, some other image components usually exist, which may lead to the shift of input distribution between train and test environments. More importantly, these components may have spurious correlations with the label. To address this issue, we propose Decompose-and-Compose (DaC), which improves robustness to correlation shift by a compositional approach based on combining elements of images. Based on our observations, models trained with ERM usually highly attend to either the causal components or the components having a high spurious correlation with the label (especially in datapoints on which models have a high confidence). In fact, according to the amount of spurious correlation and the easiness of classification based on the causal or non-causal components, the model usually attends to one of these more (on samples with high confidence). Following this, we first try to identify the causal components of images using class activation maps of models trained with ERM. Afterward, we intervene on images by combining them and retraining the model on the augmented data, including the counterfactual ones. Along with its high interpretability, this work proposes a group-balancing method by intervening on images without requiring group labels or information regarding the spurious features during training. The method has an overall better worst group accuracy compared to previous methods with the same amount of supervision on the group labels in correlation shift.
Abstract:It is well-known that training neural networks for image classification with empirical risk minimization (ERM) makes them vulnerable to relying on spurious attributes instead of causal ones for prediction. Previously, deep feature re-weighting (DFR) has proposed retraining the last layer of a pre-trained network on balanced data concerning spurious attributes, making it robust to spurious correlation. However, spurious attribute annotations are not always available. In order to provide group robustness without such annotations, we propose a new method, called loss-based feature re-weighting (LFR), in which we infer a grouping of the data by evaluating an ERM-pre-trained model on a small left-out split of the training data. Then, a balanced number of samples is chosen by selecting high-loss samples from misclassified data points and low-loss samples from correctly-classified ones. Finally, we retrain the last layer on the selected balanced groups to make the model robust to spurious correlation. For a complete assessment, we evaluate LFR on various versions of Waterbirds and CelebA datasets with different spurious correlations, which is a novel technique for observing the model's performance in a wide range of spuriosity rates. While LFR is extremely fast and straightforward, it outperforms the previous methods that do not assume group label availability, as well as the DFR with group annotations provided, in cases of high spurious correlation in the training data.