Abstract:In this paper, we study a multi-user visible light communication (VLC) system assisted with optical reflecting intelligent surface (ORIS). Joint precoding and alignment matrices are designed to maximize the average signal-to-interference plus noise ratio (SINR) criteria. Considering the constraints of the constant mean transmission power of LEDs and the power associated with all users, an optimization problem is proposed. To solve this problem, we utilize an alternating optimization algorithm to optimize the precoding and alignment matrices. The simulation results demonstrate that the resultant SINR of the proposed method outperforms ZF and MMSE precoding algorithms.
Abstract:Visible light communication (VLC) is an attractive subset of optical communication that provides a high data rate in the access layer of the network. The combination of multiple inputmultiple output (MIMO) with a VLC system leads to a higher speed of data transmission named as MIMO-VLC system. In multi-user (MU) MIMO-VLC, a LED array transmits signals for users. These signals are categorized as signals of private information for each user and signals of public information for all users. The main idea of this paper is to design an omnidirectional precoding to transmit the signals of public information in the MUMIMO-VLC network. To this end, we propose to maximize the achievable rate which leads to maximizing the received mean power at the possible location of the users. Besides maximizing the achievable rate, we consider equal mean transmission power constraint in all LEDs to achieve higher power efficiency of the power amplifiers used in the LED array. Based on this we formulate an optimization problem in which the constraint is in the form of a manifold and utilize a gradient method projected on the manifold to solve the problem. Simulation results indicate that the proposed omnidirectional precoding can achieve superior received mean power and bit error rate with respect to the classical form without precoding utilization.
Abstract:In the context of an increasing interest toward reducing the number of traffic accidents and of associated victims, communication-based vehicle safety applications have emerged as one of the best solutions to enhance road safety. In this area, visible light communications (VLC) have a great potential for applications due to their relatively simple design for basic functioning, efficiency, and large geographical distribution. Vehicular Visible Light Communication (VVLC) is preferred as a vehicle to everything (V2X) communications scheme. Due to its highly secure, low complexity, and radio frequency (RF) interference-free characteristics, exploiting the line of sight (LoS) propagation of visible light and usage of already existing vehicle light-emitting diodes (LEDs). This research is addressing the application of the Non-Orthogonal Multiple Access (NOMA) technique in VLC based Vehicle-to- Vehicle (V2V) communication. The proposed system is simulated in almost realistic conditions and the performance of the system is analyzed under different scenarios.
Abstract:Tissue assessment for chronic wounds is the basis of wound grading and selection of treatment approaches. While several image processing approaches have been proposed for automatic wound tissue analysis, there has been a shortcoming in these approaches for clinical practices. In particular, seemingly, all previous approaches have assumed only 3 tissue types in the chronic wounds, while these wounds commonly exhibit 7 distinct tissue types that presence of each one changes the treatment procedure. In this paper, for the first time, we investigate the classification of 7 wound issue types. We work with wound professionals to build a new database of 7 types of wound tissue. We propose to use pre-trained deep neural networks for feature extraction and classification at the patch-level. We perform experiments to demonstrate that our approach outperforms other state-of-the-art. We will make our database publicly available to facilitate research in wound assessment.