Abstract:Imitation learning, particularly Diffusion Policies based methods, has recently gained significant traction in embodied AI as a powerful approach to action policy generation. These models efficiently generate action policies by learning to predict noise. However, conventional Diffusion Policy methods rely on iterative denoising, leading to inefficient inference and slow response times, which hinder real-time robot control. To address these limitations, we propose a Classifier-Free Shortcut Diffusion Policy (CF-SDP) that integrates classifier-free guidance with shortcut-based acceleration, enabling efficient task-specific action generation while significantly improving inference speed. Furthermore, we extend diffusion modeling to the SO(3) manifold in shortcut model, defining the forward and reverse processes in its tangent space with an isotropic Gaussian distribution. This ensures stable and accurate rotational estimation, enhancing the effectiveness of diffusion-based control. Our approach achieves nearly 5x acceleration in diffusion inference compared to DDIM-based Diffusion Policy while maintaining task performance. Evaluations both on the RoboTwin simulation platform and real-world scenarios across various tasks demonstrate the superiority of our method.
Abstract:Open-set object detection (OSOD) is highly desirable for robotic manipulation in unstructured environments. However, existing OSOD methods often fail to meet the requirements of robotic applications due to their high computational burden and complex deployment. To address this issue, this paper proposes a light-weight framework called Decoupled OSOD (DOSOD), which is a practical and highly efficient solution to support real-time OSOD tasks in robotic systems. Specifically, DOSOD builds upon the YOLO-World pipeline by integrating a vision-language model (VLM) with a detector. A Multilayer Perceptron (MLP) adaptor is developed to transform text embeddings extracted by the VLM into a joint space, within which the detector learns the region representations of class-agnostic proposals. Cross-modality features are directly aligned in the joint space, avoiding the complex feature interactions and thereby improving computational efficiency. DOSOD operates like a traditional closed-set detector during the testing phase, effectively bridging the gap between closed-set and open-set detection. Compared to the baseline YOLO-World, the proposed DOSOD significantly enhances real-time performance while maintaining comparable accuracy. The slight DOSOD-S model achieves a Fixed AP of $26.7\%$, compared to $26.2\%$ for YOLO-World-v1-S and $22.7\%$ for YOLO-World-v2-S, using similar backbones on the LVIS minival dataset. Meanwhile, the FPS of DOSOD-S is $57.1\%$ higher than YOLO-World-v1-S and $29.6\%$ higher than YOLO-World-v2-S. Meanwhile, we demonstrate that the DOSOD model facilitates the deployment of edge devices. The codes and models are publicly available at https://github.com/D-Robotics-AI-Lab/DOSOD.