Abstract:Deformable image registration remains a fundamental task in clinical practice, yet solving registration problems involving complex deformations remains challenging. Current deep learning-based registration methods employ continuous deformation to model large deformations, which often suffer from accumulated registration errors and interpolation inaccuracies. Moreover, achieving satisfactory results with these frameworks typically requires a large number of cascade stages, demanding substantial computational resources. Therefore, we propose a novel approach, the field refinement framework (FiRework), tailored for unsupervised deformable registration, aiming to address these challenges. In FiRework, we redesign the continuous deformation framework to mitigate the aforementioned errors. Notably, our FiRework requires only one level of recursion during training and supports continuous inference, offering improved efficacy compared to continuous deformation frameworks. We conducted experiments on two brain MRI datasets, enhancing two existing deformable registration networks with FiRework. The experimental results demonstrate the superior performance of our proposed framework in deformable registration. The code is publicly available at https://github.com/ZAX130/FiRework.
Abstract:Prostate cancer (PCa) poses a significant threat to men's health, with early diagnosis being crucial for improving prognosis and reducing mortality rates. Transrectal ultrasound (TRUS) plays a vital role in the diagnosis and image-guided intervention of PCa.To facilitate physicians with more accurate and efficient computer-assisted diagnosis and interventions, many image processing algorithms in TRUS have been proposed and achieved state-of-the-art performance in several tasks, including prostate gland segmentation, prostate image registration, PCa classification and detection, and interventional needle detection.The rapid development of these algorithms over the past two decades necessitates a comprehensive summary. In consequence, this survey provides a systematic analysis of this field, outlining the evolution of image processing methods in the context of TRUS image analysis and meanwhile highlighting their relevant contributions. Furthermore, this survey discusses current challenges and suggests future research directions to possibly advance this field further.
Abstract:Most existing deep learning-based registration methods are trained on single-type images to address same-domain tasks.However, cross-domain deformable registration remains challenging.We argue that the tailor-made matching criteria in traditional registration methods is one of the main reason they are applicable in different domains.Motivated by this, we devise a registration-oriented encoder to model the matching criteria of image features and structural features, which is beneficial to boost registration accuracy and adaptability.Specifically, a general feature encoder (Encoder-G) is proposed to capture comprehensive medical image features, while a structural feature encoder (Encoder-S) is designed to encode the structural self-similarity into the global representation.Extensive experiments on images from three different domains prove the efficacy of the proposed method. Moreover, by updating Encoder-S using one-shot learning, our method can effectively adapt to different domains.The code is publicly available at https://github.com/JuliusWang-7/EncoderReg.
Abstract:Deformable image registration plays a crucial role in medical imaging, aiding in disease diagnosis and image-guided interventions. Traditional iterative methods are slow, while deep learning (DL) accelerates solutions but faces usability and precision challenges. This study introduces a pyramid network with the enhanced motion decomposition Transformer (ModeTv2) operator, showcasing superior pairwise optimization (PO) akin to traditional methods. We re-implement ModeT operator with CUDA extensions to enhance its computational efficiency. We further propose RegHead module which refines deformation fields, improves the realism of deformation and reduces parameters. By adopting the PO, the proposed network balances accuracy, efficiency, and generalizability. Extensive experiments on two public brain MRI datasets and one abdominal CT dataset demonstrate the network's suitability for PO, providing a DL model with enhanced usability and interpretability. The code is publicly available.
Abstract:The advent of deep-learning-based registration networks has addressed the time-consuming challenge in traditional iterative methods.However, the potential of current registration networks for comprehensively capturing spatial relationships has not been fully explored, leading to inadequate performance in large-deformation image registration.The pure convolutional neural networks (CNNs) neglect feature enhancement, while current Transformer-based networks are susceptible to information redundancy.To alleviate these issues, we propose a pyramid attention network (PAN) for deformable medical image registration.Specifically, the proposed PAN incorporates a dual-stream pyramid encoder with channel-wise attention to boost the feature representation.Moreover, a multi-head local attention Transformer is introduced as decoder to analyze motion patterns and generate deformation fields.Extensive experiments on two public brain magnetic resonance imaging (MRI) datasets and one abdominal MRI dataset demonstrate that our method achieves favorable registration performance, while outperforming several CNN-based and Transformer-based registration networks.Our code is publicly available at https://github.com/JuliusWang-7/PAN.
Abstract:The Transformer structures have been widely used in computer vision and have recently made an impact in the area of medical image registration. However, the use of Transformer in most registration networks is straightforward. These networks often merely use the attention mechanism to boost the feature learning as the segmentation networks do, but do not sufficiently design to be adapted for the registration task. In this paper, we propose a novel motion decomposition Transformer (ModeT) to explicitly model multiple motion modalities by fully exploiting the intrinsic capability of the Transformer structure for deformation estimation. The proposed ModeT naturally transforms the multi-head neighborhood attention relationship into the multi-coordinate relationship to model multiple motion modes. Then the competitive weighting module (CWM) fuses multiple deformation sub-fields to generate the resulting deformation field. Extensive experiments on two public brain magnetic resonance imaging (MRI) datasets show that our method outperforms current state-of-the-art registration networks and Transformers, demonstrating the potential of our ModeT for the challenging non-rigid deformation estimation problem. The benchmarks and our code are publicly available at https://github.com/ZAX130/SmileCode.